Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2276-2278, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33930293

RESUMEN

Infection with SARS-CoV-2 sets off a molecular arms race between virus replication and host cell defense. In this issue of Cell, Flynn, Belk, et al. integrate an advanced large-scale RNA-centered approach with custom CRISPR screens to functionally characterize the interactome of the SARS-CoV-2 RNA genome during infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Amigos , Interacciones Huésped-Patógeno/genética , Humanos , ARN Viral/genética
2.
J Virol ; 98(5): e0036324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38661384

RESUMEN

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores de Lipopolisacáridos , Lipopolisacáridos , Virión , Humanos , Quimiocina CCL5/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/virología , Transducción de Señal , Células THP-1 , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Virión/metabolismo
3.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197477

RESUMEN

Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C Crónica , Hepatocitos , Interacciones Huésped-Patógeno , Internalización del Virus , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Humanos
4.
J Infect Dis ; 220(7): 1209-1218, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31165162

RESUMEN

Neutralizing antibodies can prevent hepatitis C virus (HCV) infection, one of the leading causes of cirrhosis and liver cancer. Here, we characterized the immunoglobulin repertoire of memory B-cell antibodies against a linear epitope in the central front layer of the HCV envelope (E2; amino acids 483-499) in patients who were infected in a single-source outbreak. A reverse transcription polymerase chain reaction-based immunoglobulin gene cloning and recombinant expression approach was used to express monoclonal antibodies from HCV E2 peptide-binding immunoglobulin G-positive memory B cells. We identified highly mutated antibodies with a neutralizing effect in vitro against different genotype isolates sharing similar gene features. Our data confirm the importance of VH1-69 use for neutralizing activity. The data offer a promising basis for vaccine research and the use of anti-E2 antibodies as a means of passive immunization.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Epítopos de Linfocito B/inmunología , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Hepatitis C Crónica/inmunología , Inmunoglobulina G/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anciano , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Estudios de Cohortes , Femenino , Genotipo , Células HEK293 , Hepacivirus/genética , Hepatitis C Crónica/prevención & control , Hepatitis C Crónica/virología , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Globulina Inmune rho(D)/inmunología , Anticuerpos de Dominio Único/genética , Vacunas contra Hepatitis Viral/inmunología
5.
Cell Mol Life Sci ; 75(21): 3895-3905, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30097692

RESUMEN

Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.


Asunto(s)
Hepacivirus/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Hepacivirus/patogenicidad , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Hepatitis C/genética , Hepatitis C/virología , Hepatitis D/genética , Hepatitis D/virología , Virus de la Hepatitis Delta/patogenicidad , Hepatocitos/patología , Humanos , Estadios del Ciclo de Vida/genética , Internalización del Virus
6.
Gut ; 67(4): 736-745, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28360099

RESUMEN

OBJECTIVE: HCV infection is a leading cause of chronic liver disease and a major indication for liver transplantation. Although direct-acting antivirals (DAAs) have much improved the treatment of chronic HCV infection, alternative strategies are needed for patients with treatment failure. As an essential HCV entry factor, the tight junction protein claudin-1 (CLDN1) is a promising antiviral target. However, genotype-dependent escape via CLDN6 and CLDN9 has been described in some cell lines as a possible limitation facing CLDN1-targeted therapies. Here, we evaluated the clinical potential of therapeutic strategies targeting CLDN1. DESIGN: We generated a humanised anti-CLDN1 monoclonal antibody (mAb) (H3L3) suitable for clinical development and characterised its anti-HCV activity using cell culture models, a large panel of primary human hepatocytes (PHH) from 12 different donors, and human liver chimeric mice. RESULTS: H3L3 pan-genotypically inhibited HCV pseudoparticle entry into PHH, irrespective of donor. Escape was likely precluded by low surface expression of CLDN6 and CLDN9 on PHH. Co-treatment of a panel of PHH with a CLDN6-specific mAb did not enhance the antiviral effect of H3L3, confirming that CLDN6 does not function as an entry factor in PHH from multiple donors. H3L3 also inhibited DAA-resistant strains of HCV and synergised with current DAAs. Finally, H3L3 cured persistent HCV infection in human-liver chimeric uPA-SCID mice in monotherapy. CONCLUSIONS: Overall, these findings underscore the clinical potential of CLDN1-targeted therapies and describe the functional characterisation of a humanised anti-CLDN1 antibody suitable for further clinical development to complement existing therapeutic strategies for HCV.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antivirales/farmacología , Claudina-1/antagonistas & inhibidores , Hepacivirus/efectos de los fármacos , Hepatitis C/prevención & control , Hepatocitos/efectos de los fármacos , Factores Inmunológicos/farmacología , Animales , Claudina-1/inmunología , Hepatitis C/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Ratones , Ratones SCID , Resultado del Tratamiento
7.
Semin Cell Dev Biol ; 42: 39-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25960372

RESUMEN

Since their discovery, tremendous progress has been made in our understanding of the roles of claudins in tight junction physiology. In addition, interactions between claudins and other cellular proteins have highlighted their novel roles in cell physiology. Moreover, the importance of claudins is becoming apparent in the pathophysiology of several diseases, including viral infections. Notable is the discovery of CLDN1 as an essential host factor for hepatitis C virus (HCV) entry, which led to detailed characterization of CLDN1 and its association with tetraspanin CD81 for the initiation of HCV infection. CLDN1 has also been shown to facilitate dengue virus entry. Furthermore, owing to the roles of claudins in forming anatomical barriers, several viruses have been shown to alter claudin expression at the tight junction. This review summarizes the role of claudins in viral infection, with particular emphasis on HCV.


Asunto(s)
Claudinas/metabolismo , Virus ARN/fisiología , Virosis/inmunología , Virosis/virología , Internalización del Virus , Animales , Claudina-1/metabolismo , Humanos , Inmunidad Innata , Virus ARN/clasificación , Uniones Estrechas/metabolismo , Virosis/transmisión
8.
Pflugers Arch ; 469(1): 27-34, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27885488

RESUMEN

Tight junctions are critically important for many physiological functions, including the maintenance of cell polarity, regulation of paracellular permeability, and involvement in signal transduction pathways to regulate integral cellular processes. Furthermore, tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection. Viruses, in turn, have evolved mechanisms to exploit tight junction proteins to gain access to cells or spread through tissues in an infected host. Claudin family proteins are integral components of tight junctions and are thought to play crucial roles in regulating their permeability. Claudins have been implicated in the infection process of several medically important human pathogens, including hepatitis C virus, dengue virus, West Nile virus, and human immunodeficiency virus, among others. In this review, we summarize the role of claudins in viral infections and discuss their potential as novel antiviral targets. A better understanding of claudins during viral infection may provide insight into physiological roles of claudins and uncover novel therapeutic antiviral strategies.


Asunto(s)
Claudinas/metabolismo , Virosis/metabolismo , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/virología , Virosis/tratamiento farmacológico
9.
Hepatology ; 63(1): 35-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26224662

RESUMEN

UNLABELLED: Chronic hepatitis B and D infections are major causes of liver disease and hepatocellular carcinoma worldwide. Efficient therapeutic approaches for cure are absent. Sharing the same envelope proteins, hepatitis B virus and hepatitis delta virus use the sodium/taurocholate cotransporting polypeptide (a bile acid transporter) as a receptor to enter hepatocytes. However, the detailed mechanisms of the viral entry process are still poorly understood. Here, we established a high-throughput infectious cell culture model enabling functional genomics of hepatitis delta virus entry and infection. Using a targeted RNA interference entry screen, we identified glypican 5 as a common host cell entry factor for hepatitis B and delta viruses. CONCLUSION: These findings advance our understanding of virus cell entry and open new avenues for curative therapies. As glypicans have been shown to play a role in the control of cell division and growth regulation, virus-glypican 5 interactions may also play a role in the pathogenesis of virus-induced liver disease and cancer.


Asunto(s)
Glipicanos/fisiología , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis Delta/patogenicidad , ARN no Traducido/fisiología , Internalización del Virus , Células Cultivadas , Humanos
10.
Biochim Biophys Acta ; 1854(10 Pt B): 1657-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25896387

RESUMEN

Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Asunto(s)
Receptores ErbB/metabolismo , Hepacivirus/genética , Hepatitis C/genética , Interacciones Huésped-Patógeno/genética , Animales , Receptores ErbB/genética , Hepacivirus/patogenicidad , Hepatitis C/virología , Hepatocitos/enzimología , Hepatocitos/virología , Humanos , Estadios del Ciclo de Vida/genética , Antígenos de Histocompatibilidad Menor , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptor EphA2/genética , Proteínas no Estructurales Virales/genética , Ensamble de Virus/genética , Internalización del Virus
11.
Hepatology ; 62(3): 726-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26010076

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) causes persistent infection in the majority of infected individuals. The mechanisms of persistence and clearance are only partially understood. Antibodies (Abs) against host cell entry receptors have been shown to inhibit HCV infection in cell culture and animal models. In this study, we aimed to investigate whether anti-receptor Abs are induced during infection in humans in vivo and whether their presence is associated with outcome of infection. We established an enzyme-linked immunosorbant assay using a recombinant CD81-claudin-1 (CLDN1) fusion protein to detect and quantify Abs directed against extracellular epitopes of the HCV CD81-CLDN1 coreceptor complex. The presence of anti-receptor Abs was studied in serum of patients from a well-defined cohort of a single-source HCV outbreak of pregnant women and several control groups, including uninfected pregnant women, patients with chronic hepatitis B and D virus (HBV/HDV) infection, and healthy individuals. Virus-neutralizing activity of Abs was determined using recombinant cell culture-derived HCV (HCVcc). Our results demonstrate that HCV-infected patients have statistically significantly higher anti-CD81/CLDN1 Ab titers during the early phase of infection than controls. The titers were significantly higher in resolvers compared to persisters. Functional studies using immunoadsorption and HCV cell culture models demonstrate that HCV-neutralizing anti-receptor Abs are induced in the early phase of HCV infection, but not in control groups. CONCLUSION: The virus-neutralizing properties of these Abs suggest a role for control of viral infection in conjunction with antiviral responses. Characterization of these anti-receptor Abs opens new avenues to prevent and treat HCV infection.


Asunto(s)
Claudina-1/farmacología , Hepacivirus/inmunología , Hepatitis C/inmunología , Tetraspanina 28/metabolismo , Internalización del Virus/efectos de los fármacos , Adulto , Células Cultivadas , Claudina-1/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Hepacivirus/metabolismo , Hepatitis C/tratamiento farmacológico , Humanos , Immunoblotting , Método de Montecarlo , Embarazo , Curva ROC , Receptores Virales/efectos de los fármacos , Receptores Virales/inmunología , Muestreo , Adulto Joven
12.
Hepatology ; 62(3): 702-14, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25999047

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) is a positive-strand RNA virus that primarily infects human hepatocytes. Infections with HCV constitute a global health problem, with 180 million people currently chronically infected. Recent studies have reported that cholesterol 25-hydroxylase (CH25H) is expressed as an interferon-stimulated gene and mediates antiviral activities against different enveloped viruses through the production of 25-hydroxycholesterol (25HC). However, the intrinsic regulation of human CH25H (hCH25H) expression within the liver as well as its mechanistic effects on HCV infectivity remain elusive. In this study, we characterized the expression of hCH25H using liver biopsies and primary human hepatocytes. In addition, the antiviral properties of this protein and its enzymatic product, 25HC, were further characterized against HCV in tissue culture. Levels of hCH25H messenger RNA were significantly up-regulated both in HCV-positive liver biopsies and in HCV-infected primary human hepatocytes. The expression of hCH25H in primary human hepatocytes was primarily and transiently induced by type I interferon. Transient expression of hCH25H in human hepatoma cells restricted HCV infection in a genotype-independent manner. This inhibition required the enzymatic activity of CH25H. We observed an inhibition of viral membrane fusion during the entry process by 25HC, which was not due to a virucidal effect. Yet the primary effect by 25HC on HCV was at the level of RNA replication, which was observed using subgenomic replicons of two different genotypes. Further analysis using electron microscopy revealed that 25HC inhibited formation of the membranous web, the HCV replication factory, independent of RNA replication. CONCLUSION: Infection with HCV causes up-regulation of interferon-inducible CH25H in vivo, and its product, 25HC, restricts HCV primarily at the level of RNA replication by preventing formation of the viral replication factory.


Asunto(s)
Hepacivirus/genética , Interferones/farmacología , Esteroide Hidroxilasas/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Biopsia con Aguja , Células Cultivadas , Replicación del ADN/efectos de los fármacos , Regulación Viral de la Expresión Génica , Hepatitis C Crónica/patología , Hepatocitos/metabolismo , Humanos , Sensibilidad y Especificidad , Regulación hacia Arriba/efectos de los fármacos
14.
J Virol ; 88(14): 7806-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24789779

RESUMEN

Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. Importance: This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , Virus ADN/efectos de los fármacos , Heparitina Sulfato/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Virus ARN/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Catequina/aislamiento & purificación , Catequina/farmacología , Chlorocebus aethiops , Virus ADN/fisiología , Perros , Células de Riñón Canino Madin Darby , Polisacáridos/metabolismo , Virus ARN/fisiología , Células Vero , Virión/efectos de los fármacos
15.
Gut ; 63(7): 1137-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23903236

RESUMEN

OBJECTIVE: Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. DESIGN: The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. RESULTS: Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,ß-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. CONCLUSIONS: Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.


Asunto(s)
Antivirales/farmacología , Curcumina/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/prevención & control , Hepatocitos/virología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Línea Celular , Línea Celular Tumoral , Curcumina/uso terapéutico , Hepacivirus/fisiología , Hepatitis C/virología , Humanos , Ratones , Ensamble de Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
16.
J Biol Chem ; 288(4): 2767-77, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223578

RESUMEN

The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and characterized PpORS from the moss Physcomitrella. PpORS has been proposed to closely resemble the most recent common ancestor of the plant type III PKSs. PpORS condenses a very long chain fatty acyl-CoA with four molecules of malonyl-CoA and catalyzes decarboxylative aldol cyclization to yield the pentaketide 2'-oxoalkylresorcinol. Therefore, PpORS is a 2'-oxoalkylresorcinol synthase. Structure modeling and sequence alignments identified a unique set of amino acid residues (Gln(218), Val(277), and Ala(286)) at the putative PpORS active site. Substitution of the Ala(286) to Phe apparently constricted the active site cavity, and the A286F mutant instead produced triketide alkylpyrones from fatty acyl-CoA substrates with shorter chain lengths. Phylogenetic analysis and comparison of the active sites of PpORS and alkylresorcinol synthases from sorghum and rice suggested that the gramineous enzymes evolved independently from PpORS to have similar functions but with distinct active site architecture. Microarray analysis revealed that PpORS is exclusively expressed in nonprotonemal moss cells. The in planta function of PpORS, therefore, is probably related to a nonprotonemal structure, such as the cuticle.


Asunto(s)
Bryopsida/metabolismo , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/química , Sitios de Unión , Catálisis , Dominio Catalítico , Clonación Molecular , Etiquetas de Secuencia Expresada , Regulación Enzimológica de la Expresión Génica , Cinética , Modelos Químicos , Mutagénesis Sitio-Dirigida , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Sintasas Poliquetidas/química , Unión Proteica , Proteínas Recombinantes/química
17.
J Virol ; 87(7): 3640-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23283943

RESUMEN

Entry of enveloped viruses requires fusion of viral and cellular membranes. Fusion requires the formation of an intermediate stalk structure, in which only the outer leaflets are fused. The stalk structure, in turn, requires the lipid bilayer of the envelope to bend into negative curvature. This process is inhibited by enrichment in the outer leaflet of lipids with larger polar headgroups, which favor positive curvature. Accordingly, phospholipids with such shape inhibit viral fusion. We previously identified a compound, 5-(perylen-3-yl)ethynyl-2'-deoxy-uridine (dUY11), with overall shape and amphipathicity similar to those of these phospholipids. dUY11 inhibited the formation of the negative curvature necessary for stalk formation and the fusion of a model enveloped virus, vesicular stomatitis virus (VSV). We proposed that dUY11 acted by biophysical mechanisms as a result of its shape and amphipathicity. To test this model, we have now characterized the mechanisms against influenza virus and HCV of 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), which has shape and amphipathicity similar to those of dUY11 but contains an arabino-nucleoside. aUY11 interacted with envelope lipids to inhibit the infectivity of influenza virus, hepatitis C virus (HCV), herpes simplex virus 1 and 2 (HSV-1/2), and other enveloped viruses. It specifically inhibited the fusion of influenza virus, HCV, VSV, and even protein-free liposomes to cells. Furthermore, aUY11 inhibited the formation of negative curvature in model lipid bilayers. In summary, the arabino-derived aUY11 and the deoxy-derived dUY11 act by the same antiviral mechanisms against several enveloped but otherwise unrelated viruses. Therefore, chemically unrelated compounds of appropriate shape and amphipathicity target virion envelope lipids to inhibit formation of the negative curvature required for fusion, inhibiting infectivity by biophysical, not biochemical, mechanisms.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Perileno/análogos & derivados , Uridina/análogos & derivados , Internalización del Virus/efectos de los fármacos , Animales , Rastreo Diferencial de Calorimetría , Chlorocebus aethiops , Perros , Péptidos y Proteínas de Señalización Intracelular , Liposomas , Células de Riñón Canino Madin Darby , Ratones , Microscopía Confocal , Células 3T3 NIH , Péptidos , Perileno/farmacología , Especificidad de la Especie , Espectrometría de Fluorescencia , Uridina/farmacología , Células Vero
20.
Plant Cell ; 22(12): 4045-66, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21193570

RESUMEN

Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Polen , Sintasas Poliquetidas/genética , Alelos , Genes de Plantas , Hibridación in Situ , Cinética , Microscopía Electrónica de Transmisión , Mutación , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA