Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34499854

RESUMEN

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Pandemias , Recombinación Genética , SARS-CoV-2/genética , Secuencia de Bases/genética , COVID-19/virología , Biología Computacional/métodos , Frecuencia de los Genes , Genoma Viral , Genotipo , Humanos , Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Reino Unido/epidemiología , Secuenciación Completa del Genoma/métodos
2.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33275900

RESUMEN

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Ácido Aspártico/análisis , Ácido Aspártico/genética , COVID-19/epidemiología , Genoma Viral , Glicina/análisis , Glicina/genética , Humanos , Mutación , SARS-CoV-2/crecimiento & desarrollo , Reino Unido/epidemiología , Virulencia , Secuenciación Completa del Genoma
3.
Cell ; 184(5): 1171-1187.e20, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621484

RESUMEN

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.


Asunto(s)
COVID-19/inmunología , Aptitud Genética , Evasión Inmune , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Humanos , Mutación , Filogenia , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Virulencia
4.
EBioMedicine ; 100: 104939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194742

RESUMEN

BACKGROUND: Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of growing genomic variants can therefore serve as a predictor of future waves, enabling timely implementation of countermeasures such as non-pharmaceutical interventions (social distancing), additional vaccination (booster campaigns), or healthcare capacity adjustments. The large amount of SARS-CoV-2 genomic sequence data produced during the pandemic has provided a unique opportunity to explore the utility of these data for generating early warning signals (EWS). METHODS: We developed an analytical pipeline (Transmission Fitness Polymorphism Scanner - designated in an R package mrc-ide/tfpscanner) for systematically exploring all clades within a SARS-CoV-2 virus phylogeny to detect variants showing unusually high growth rates. We investigated the use of these cluster growth rates as the basis for a variety of statistical time series to use as leading indicators for the epidemic waves in the UK during the pandemic between August 2020 and March 2022. We also compared the performance of these phylogeny-derived leading indicators with a range of non-phylogeny-derived leading indicators. Our experiments simulated data generation and real-time analysis. FINDINGS: Using phylogenomic analysis, we identified leading indicators that would have generated EWS ahead of significant increases in COVID-19 hospitalisations in the UK between August 2020 and March 2022. Our results also show that EWS lead time is sensitive to the threshold set for the number of false positive (FP) EWS. It is often possible to generate longer EWS lead times if more FP EWS are tolerated. On the basis of maximising lead time and minimising the number of FP EWS, the best performing leading indicators that we identified, amongst a set of 1.4 million, were the maximum logistic growth rate (LGR) amongst clusters of the dominant Pango lineage and the mean simple LGR across a broader set of clusters. In the case of the former, the time between the EWS and wave inflection points (a conservative measure of wave start dates) for the seven waves ranged between a 20-day lead time and a 7-day lag, with a mean lead time of 5.4 days. The maximum number of FP EWS generated prior to a true positive (TP) EWS was two and this only occurred for two of the seven waves in the period. The mean simple LGR amongst a broader set of clusters also performed well in terms of lead time but with slightly more FP EWS. INTERPRETATION: As a result of the significant surveillance effort during the pandemic, early detection of SARS-CoV-2 variants of concern Alpha, Delta, and Omicron provided some of the first examples where timely detection and characterisation of pathogen variants has been used to tailor public health response. The success of our method in generating early warning signals based on phylogenomic analysis for SARS-CoV-2 in the UK may make it a worthwhile addition to existing surveillance strategies. In addition, the method may be translatable to other countries and/or regions, and to other pathogens with large-scale and rapid genomic surveillance. FUNDING: This research was funded in whole, or in part, by the Wellcome Trust (220885_Z_20_Z). For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. KOD, OB, VBF and EMV acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/X020258/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. RMC acknowledges funding from the Wellcome Trust Collaborators Award (206298/Z/17/Z).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Filogenia , Pandemias/prevención & control
5.
Genome Biol ; 23(1): 147, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35791022

RESUMEN

There are many short-read variant-calling tools, with different strengths and weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant callers, increasing recall without loss of precision. We benchmark on 62 samples from three bacterial species and an outbreak of 385 Mycobacterium tuberculosis samples. Minos also enables joint genotyping; we demonstrate on a large (N=13k) M. tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region where all such variants are assumed to cause rifampicin resistance. We quantify the correlation with phenotypic resistance and then replicate in a second cohort (N=10k).


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mycobacterium tuberculosis , Genoma Bacteriano , Genotipo , Humanos , Mutación INDEL , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleótido Simple
6.
Genome Biol ; 22(1): 267, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521456

RESUMEN

We present pandora, a novel pan-genome graph structure and algorithms for identifying variants across the full bacterial pan-genome. As much bacterial adaptability hinges on the accessory genome, methods which analyze SNPs in just the core genome have unsatisfactory limitations. Pandora approximates a sequenced genome as a recombinant of references, detects novel variation and pan-genotypes multiple samples. Using a reference graph of 578 Escherichia coli genomes, we compare 20 diverse isolates. Pandora recovers more rare SNPs than single-reference-based tools, is significantly better than picking the closest RefSeq reference, and provides a stable framework for analyzing diverse samples without reference bias.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Programas Informáticos , Algoritmos , Escherichia coli/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nanoporos , Nucleótidos , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Genome Biol ; 22(1): 196, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210356

RESUMEN

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Asunto(s)
Nube Computacional , Genómica/organización & administración , SARS-CoV-2/genética , COVID-19/epidemiología , Monitoreo Epidemiológico , Genoma Viral , Humanos , Análisis de Secuencia de ADN , Reino Unido , Interfaz Usuario-Computador , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA