Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14705, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908198

RESUMEN

Carbonate cave deposits (speleothems) have been used widely for paleoclimate reconstructions; however, few studies have examined the utility of other speleothem-forming minerals for this purpose. Here we demonstrate for the first time that stable isotopes (δ17O, δ18O and δD) of structurally-bound gypsum (CaSO4·2H2O) hydration water (GHW) can be used to infer paleoclimate. Specifically, we used a 63 cm-long gypsum stalactite from Sima Blanca Cave to reconstruct the climate history of SE Spain from ~ 800 BCE to ~ 800 CE. The gypsum stalactite indicates wet conditions in the cave and humid climate from ~ 200 BCE to 100 CE, at the time of the Roman Empire apogee in Hispania. From ~ 100 CE to ~ 600 CE, evaporation in the cave increased in response to regional aridification that peaked at ~ 500-600 CE, roughly coinciding with the transition between the Iberian Roman Humid Period and the Migration Period. Our record agrees with most Mediterranean and Iberian paleoclimate archives, demonstrating that stable isotopes of GHW in subaerial gypsum speleothems are a useful tool for paleoclimate reconstructions.

2.
Sci Rep ; 10(1): 17256, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037258

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 14961, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917916

RESUMEN

The North Atlantic Oscillation (NAO) is the major atmospheric mode that controls winter European climate variability because its strength and phase determine regional temperature, precipitation and storm tracks. The NAO spatial structure and associated climatic impacts over Europe are not stationary making it crucial to understanding its past evolution in order to improve the predictability of future scenarios. In this regard, there has been a dramatic increase in the number of studies aimed at reconstructing past NAO variability, but the information related to decadal-scale NAO evolution beyond the last millennium is scarce and inconclusive. We present a new 2,000-year multi-annual, proxy-based reconstruction of local NAO impact, with associated uncertainties, obtained by a Bayesian approach. This new local NAO reconstruction is obtained from a mountain lacustrine sedimentary archive of the Iberian Peninsula. This geographical area is not included in previous NAO reconstructions despite being a widely used region for instrumental-based NAO measurements. We assess the main external forcings (i.e., volcanic eruptions and solar activity) on NAO variability which, on a decadal scale, show that a low number of sunspots correlate to low NAO values. By comparison with other previously published NAO reconstructions in our analyses we can test the stationarity of the solar influence on the NAO signal across a latitudinal gradient based on the position of the employed archives for each NAO reconstruction. Inconclusive results on the volcanic forcing on NAO variability over decadal time-scales indicates the need for further studies. Moreover, we highlight the potential role of other North Atlantic modes of variability (i.e., East Atlantic pattern) on the non-stationary behaviour of the NAO throughout the Common Era, likely via solar forcing.

4.
Nat Commun ; 10(1): 2984, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278295

RESUMEN

The oxygen isotope composition of speleothems is a widely used proxy for past climate change. Robust use of this proxy depends on understanding the relationship between precipitation and cave drip water δ18O. Here, we present the first global analysis, based on data from 163 drip sites, from 39 caves on five continents, showing that drip water δ18O is most similar to the amount-weighted precipitation δ18O where mean annual temperature (MAT) is < 10 °C. By contrast, for seasonal climates with MAT > 10 °C and < 16 °C, drip water δ18O records the recharge-weighted δ18O. This implies that the δ18O of speleothems (formed in near isotopic equilibrium) are most likely to directly reflect meteoric precipitation in cool climates only. In warmer and drier environments, speleothems will have a seasonal bias toward the precipitation δ18O of recharge periods and, in some cases, the extent of evaporative fractionation of stored karst water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA