Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(7): e17311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468155

RESUMEN

Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.


Asunto(s)
Flujo Genético , Urbanización , Humanos , Ciudades , Ecosistema , Demografía
2.
Ecol Lett ; 22(10): 1599-1607, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31347757

RESUMEN

Interactions between ants and phloem-feeding herbivores are characterised as a keystone mutualism because they restructure arthropod communities and generate trophic cascades. Keystone interactions in terrestrial food webs are hypothesised to depend on herbivore community structure and bottom-up effects on plant growth. Here, we tested this prediction at a landscape scale with a long-term ant-exclusion experiment on hickory saplings in the context of spatial variation in herbivore community structure and habitat quality. We quantified top-down effects of ants, herbivore communities as well as abiotic factors impacting hickory shoot growth. We found that ants influenced shoot growth via strong, context-dependent, compensatory effects, with clear cascading benefits only when phloem-feeders were present and chewing herbivore abundance was high. By contrast, while several landscape variables predicted hickory growth, they did not mediate the strength of cascading effects of ants. These results suggest that ant/sap-feeder mutualisms may regulate forest productivity by mediating effects of multiple herbivore guilds.


Asunto(s)
Hormigas , Bosques , Herbivoria , Árboles/crecimiento & desarrollo , Animales , Simbiosis
3.
Nat Ecol Evol ; 7(11): 1856-1868, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813943

RESUMEN

Predicting future evolutionary change is a critical challenge in the Anthropocene as geographic range shifts and local extinction emerge as hallmarks of planetary change. Hence, spatial sorting-a driver of rapid evolution in which dispersal-associated traits accumulate along expanding range edges and within recolonized habitats-might be of growing importance in ecology and conservation. We report on the results of a natural experiment that monitored recolonization of host plants by the seed-feeding, red-shouldered soapberry bug, Jadera haematoloma, after local extinctions from catastrophic flooding in an extreme hurricane. We tested the contribution of spatial sorting to generate rapid and persistent evolution in dispersal traits, as well as in feeding traits unrelated to dispersal. Long-winged dispersal forms accumulated in recolonized habitats and due to genetic correlation, mouthparts also became longer and this shift persisted across generations. Those longer mouthparts were probably adaptive on one host plant species but maladaptive on two others based on matching the optimum depth of seeds within their host fruits. Moreover, spatial sorting eroded recently evolved adaptive divergence in mouthpart length among all host-associated biotypes, an outcome pointing to profound practical consequences of the extreme weather event for local adaptation, population resilience and evolutionary futures.


Asunto(s)
Tormentas Ciclónicas , Sapindus , Trombiculidae , Animales , Ecosistema , Ecología , Plantas
4.
Artículo en Inglés | MEDLINE | ID: mdl-37788888

RESUMEN

Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.


Asunto(s)
Ecosistema , Especiación Genética , Humanos , Evolución Biológica , Biodiversidad , Filogenia
5.
Evolution ; 75(2): 476-489, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33330984

RESUMEN

Immigrant inviability can contribute to reproductive isolation (RI) during ecological speciation by reducing the survival of immigrants in non-native environments. However, studies that assess the fitness consequence of immigrants moving from native to non-native environments typically fail to explore the potential role of concomitant reductions in immigrant fecundity despite recent evidence suggesting its prominent role during local adaptation. Here, we evaluate the directionality and magnitude of both immigrant viability and fecundity to RI in a host-specific gall-forming wasp, Belonocnema treatae. Using reciprocal transplant experiments replicated across sites, we measure immigrant viability and fecundity by comparing differences in the incidence of gall formation (viability) and predicted the number of eggs per female (fecundity) between residents and immigrants in each of two host-plant environments. Reduced immigrant viability was found in one host environment while reduced immigrant fecundity was found in the other. Such habitat-dependent barriers resulted in asymmetric RI between populations. By surveying recent literature on local adaptation, we find that asymmetry in immigrant viability and fecundity are widespread across disparate taxa, which highlights the need to combine estimates of both common and overlooked barriers in cases of potential bi-directional gene flow to create a more comprehensive view of the evolution of RI.


Asunto(s)
Aislamiento Reproductivo , Avispas , Animales , Femenino , Fertilidad , Masculino , Quercus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA