RESUMEN
Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Enfermedades Musculares/genética , Oxidorreductasas , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/efectos adversosRESUMEN
The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of aberrant cell behaviors due to the growth on non-physiologically stiff surfaces and the lack of the tissue-based extracellular matrix. Here, we investigate the sensitivity of the two-photon (2P) rotational dynamics of the intrinsic reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, to changes in the metabolic state of the metastatic murine breast cancer cells (4T1) in 2D monolayer and three-dimensional (3D) collagen matrix cultures. Time-resolved 2P-associated anisotropy measurements reveal that the rotational dynamics of free and enzyme-bound NAD(P)H in 4T1 cells are correlated to changes in the metabolic state of 2D and 3D cell cultures. In addition to the type of cell culture, we also investigated the metabolic response of 4T1 cells to treatment with two metabolic inhibitors (MD1 and TPPBr). The statistical analyses of our results enabled us to identify which of the fitting parameters of the observed time-resolved associate anisotropy of cellular NAD(P)H were significantly sensitive to changes in the metabolic state of 4T1 cells. Using a black-box model, the population fractions of free and bound NAD(P)H were used to estimate the corresponding equilibrium constant and the standard Gibbs free energy changes that are associated with underlying metabolic pathways of 4T1 cells in 2D and 3D cultures. These rotational dynamics analyses are in agreement with the standard 2P-fluorescence lifetime imaging microscopy (FLIM) measurements on the same cell line, cell cultures, and metabolic inhibition. These studies represent an important step towards the development of a noninvasive, time-resolved associated anisotropy to complement 2P-FLIM in order to elucidate the underlying cellular metabolism and metabolic plasticity in more complex in vivo, tumor-like models using intrinsic NADH autofluorescence.
Asunto(s)
Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , NADP/metabolismo , Animales , Anisotropía , Neoplasias de la Mama/patología , Colágeno/química , Femenino , Ratones , NADP/análisis , Células Tumorales CultivadasRESUMEN
FAM111A, a serine protease, plays roles in DNA replication and antiviral defense. Missense mutations in the catalytic domain cause hyper-autocleavage and are associated with genetic disorders with developmental defects. Despite the enzyme's biological significance, the molecular architecture of the FAM111A serine protease domain (SPD) is unknown. Here, we show that FAM111A is a dimerization-dependent protease containing a narrow, recessed active site that cleaves substrates with a chymotrypsin-like specificity. X-ray crystal structures and mutagenesis studies reveal that FAM111A dimerizes via the N-terminal helix within the SPD. This dimerization induces an activation cascade from the dimerization sensor loop to the oxyanion hole through disorder-to-order transitions. Dimerization is essential for proteolytic activity in vitro and for facilitating DNA replication at DNA-protein crosslink obstacles in cells, while it is dispensable for autocleavage. These findings underscore the role of dimerization in FAM111A's function and highlight the distinction in its dimerization dependency between substrate cleavage and autocleavage.
Asunto(s)
Serina Endopeptidasas , Serina Proteasas , Dimerización , Serina Endopeptidasas/metabolismo , Proteolisis , Replicación del ADN , SerinaRESUMEN
Mammalian cell lines are important expression systems for large proteins and protein complexes, particularly when the acquisition of post-translational modifications in the protein's native environment is desired. However, low or variable transfection efficiencies are challenges that must be overcome to use such an expression system. Expression of recombinant proteins as a fluorescent protein fusion enables real-time monitoring of protein expression, and also provides an affinity handle for one-step protein purification using a suitable affinity reagent. Here, we describe a panel of anti-GFP and anti-mCherry nanobody affinity matrices and their efficacy for purification of GFP/YFP or mCherry fusion proteins. We define the molecular basis by which they bind their target proteins using X-ray crystallography. From these analyses, we define an optimal pair of nanobodies for purification of recombinant protein tagged with GFP/YFP or mCherry, and demonstrate these nanobody-sepharose supports are stable to many rounds of cleaning and extended incubation in denaturing conditions. Finally, we demonstrate the utility of the mCherry-tag system by using it to purify recombinant human topoisomerase 2α expressed in HEK293F cells. The mCherry-tag and GFP/YFP-tag expression systems can be utilized for recombinant protein expression individually or in tandem for mammalian protein expression systems where real-time monitoring of protein expression levels and a high-efficiency purification step is needed.
Asunto(s)
Anticuerpos de Dominio Único , Animales , Cromatografía de Afinidad , Cristalografía por Rayos X , Humanos , Mamíferos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismoRESUMEN
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIß (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.