Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236538

RESUMEN

Plant pests are the primary biological threats to agricultural and forestry production as well as forest ecosystem. Monitoring forest-pest damage via satellite images is crucial for the development of prevention and control strategies. Previous studies utilizing deep learning to monitor pest-infested damage in satellite imagery adopted RGB images, while multispectral imagery and vegetation indices were not used. Multispectral images and vegetation indices contain a wealth of useful information for detecting plant health, which can improve the precision of pest damage detection. The aim of the study is to further improve forest-pest infestation area segmentation by combining multispectral, vegetation indices and RGB information into deep learning. We also propose a new image segmentation method based on UNet++ with attention mechanism module for detecting forest damage induced by bark beetle and aspen leaf miner in Sentinel-2 images. The ResNeSt101 is used as the feature extraction backbone, and the attention mechanism scSE module is introduced in the decoding phase for improving the image segmentation results. We used Sentinel-2 imagery to produce a dataset based on forest health damage data gathered by the Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) in British Columbia (BC), Canada, during aerial overview surveys (AOS) in 2020. The dataset contains the 11 original Sentinel-2 bands and 13 vegetation indices. The experimental results confirmed that the significance of vegetation indices and multispectral data in enhancing the segmentation effect. The results demonstrated that the proposed method exhibits better segmentation quality and more accurate quantitative indices with overall accuracy of 85.11%, in comparison with the state-of-the-art pest area segmentation methods.


Asunto(s)
Ecosistema , Imágenes Satelitales , Agricultura , Monitoreo del Ambiente/métodos , Bosques
2.
Curr Med Imaging ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259220

RESUMEN

AIM: This study aimed to automatically implement liver disease quantification (DQ) in lymphoma using CT images without lesion segmentation. BACKGROUND: Computed Tomography (CT) imaging manifestations of liver lymphoma include diffuse infiltration, blurred boundaries, vascular drift signs, and multiple lesions, making liver lymphoma segmentation extremely challenging. METHODS: The method includes two steps: liver recognition and liver disease quantification. We use the transfer learning technique to recognize the diseased livers automatically and delineate the livers manually using the CAVASS software. When the liver is recognized, liver disease quantification is performed using the disease map model. We test our method in 10 patients with liver lymphoma. A random grouping cross-validation strategy is used to evaluate the quantification accuracy of the manual and automatic methods, with reference to the ground truth. RESULTS: We split the 10 subjects into two groups based on lesion size. The average accuracy for the total lesion burden (TLB) quantification is 91.76%±0.093 for the group with large lesions and 95.57%±0.032 for the group with small lesions using the manual organ (MO) method. An accuracy of 85.44%±0.146 for the group with larger lesions and 81.94%±0.206 for the small lesion group is obtained using the automatic organ (AO) method, with reference to the ground truth. CONCLUSION: Our DQ-MO and DQ-AO methods show good performance for varied lymphoma morphologies, from homogeneous to heterogeneous, and from single to multiple lesions in one subject. Our method can also be extended to CT images of other organs in the abdomen for disease quantification, such as Kidney, Spleen and Gallbladder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA