RESUMEN
The giant elliptical galaxy NGC 1275, at the centre of the Perseus cluster, is surrounded by a well-known giant nebulosity of emission-line filaments, which are plausibly in excess of 10(8) years old. The filaments are dragged out from the centre of the galaxy by radio-emitting 'bubbles' rising buoyantly in the hot intracluster gas, before later falling back. They act as markers of the feedback process by which energy is transferred from the central massive black hole to the surrounding gas. The mechanism by which the filaments are stabilized against tidal shear and dissipation into the surrounding extremely hot (4 x 10(7) K) gas has been unclear. Here we report observations that resolve thread-like structures in the filaments. Some threads extend over 6 kpc, yet are only 70 pc wide. We conclude that magnetic fields in the threads, in pressure balance with the surrounding gas, stabilize the filaments, so allowing a large mass of cold gas to accumulate and delay star formation.
RESUMEN
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.