RESUMEN
Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
Asunto(s)
Sistemas de Identificación Animal , Organismos Acuáticos/fisiología , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/métodos , Ecosistema , Océanos y Mares , Conducta Predatoria , Animales , Regiones Antárticas , Biodiversidad , Aves , Peces , Cadena Alimentaria , Cubierta de Hielo , Mamíferos , Dinámica PoblacionalRESUMEN
Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.
Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Efectos Antropogénicos , Océano ÍndicoRESUMEN
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
Asunto(s)
Receptores Odorantes , Olfato , Ballenas , Animales , Receptores Odorantes/genética , Ballenas/genética , Olfato/genética , Selección Genética , Filogenia , Evolución Molecular , EcosistemaRESUMEN
Marine protected areas (MPAs) are a commonly used management tool to safeguard marine life from anthropogenic impacts, yet their efficacy often remains untested. Evaluating how highly dynamic marine species use static MPAs is challenging but becoming more feasible with the advancement of telemetry data. Here, we focus on southern right whales (Eubalaena australis, SRWs) in the waters off Aotearoa/New Zealand, which declined from 30,000 whales to fewer than 40 mature females due to whaling. Now numbering in the low thousands, the key socializing and nursery areas for this population in the remote subantarctic islands are under the protection of different types of MPAs. However, the effectiveness of these MPAs in encompassing important whale habitat and protecting the whales from vessel traffic has not been investigated. To address this, we analyzed telemetry data from 29 SRWs tagged at the Auckland Islands between 2009 and 2022. We identified two previously unknown and currently unprotected areas that were used by the whales for important behaviors such as foraging, socializing, or resting. Additionally, by combining whale locations and vessel tracking data (2020-2022) during peak breeding period (June to October), we found high spatiotemporal overlap between whales and vessels within several MPAs, suggesting the whales could still be vulnerable to multiple anthropogenic stressors even when within areas designated for protection. Our results identify areas to be prioritized for future monitoring and investigation to support the ongoing recovery of this SRW population, as well as highlight the overarching importance of assessing MPA effectiveness post-implementation, especially in a changing climate.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Nueva Zelanda , Migración Animal , Ballenas , FemeninoRESUMEN
Genome sequences can reveal the extent of inbreeding in small populations. Here, we present the first genomic characterization of type D killer whales, a distinctive eco/morphotype with a circumpolar, subantarctic distribution. Effective population size is the lowest estimated from any killer whale genome and indicates a severe population bottleneck. Consequently, type D genomes show among the highest level of inbreeding reported for any mammalian species (FROH ≥ 0.65). Detected recombination cross-over events of different haplotypes are up to an order of magnitude rarer than in other killer whale genomes studied to date. Comparison of genomic data from a museum specimen of a type D killer whale that stranded in New Zealand in 1955, with 3 modern genomes from the Cape Horn area, reveals high covariance and identity-by-state of alleles, suggesting these genomic characteristics and demographic history are shared among geographically dispersed social groups within this morphotype. Limitations to the insights gained in this study stem from the nonindependence of the 3 closely related modern genomes, the recent coalescence time of most variation within the genomes, and the nonequilibrium population history which violates the assumptions of many model-based methods. Long-range linkage disequilibrium and extensive runs of homozygosity found in type D genomes provide the potential basis for both the distinctive morphology, and the coupling of genetic barriers to gene flow with other killer whale populations.
Asunto(s)
Orca , Animales , Orca/genética , Densidad de Población , Variación Genética , Genoma , Endogamia , HomocigotoRESUMEN
The deep sea has been described as the last major ecological frontier, as much of its biodiversity is yet to be discovered and described. Beaked whales (ziphiids) are among the most visible inhabitants of the deep sea, due to their large size and worldwide distribution, and their taxonomic diversity and much about their natural history remain poorly understood. We combine genomic and morphometric analyses to reveal a new Southern Hemisphere ziphiid species, Ramari's beaked whale, Mesoplodon eueu, whose name is linked to the Indigenous peoples of the lands from which the species holotype and paratypes were recovered. Mitogenome and ddRAD-derived phylogenies demonstrate reciprocally monophyletic divergence between M. eueu and True's beaked whale (M. mirus) from the North Atlantic, with which it was previously subsumed. Morphometric analyses of skulls also distinguish the two species. A time-calibrated mitogenome phylogeny and analysis of two nuclear genomes indicate divergence began circa 2 million years ago (Ma), with geneflow ceasing 0.35-0.55 Ma. This is an example of how deep sea biodiversity can be unravelled through increasing international collaboration and genome sequencing of archival specimens. Our consultation and involvement with Indigenous peoples offers a model for broadening the cultural scope of the scientific naming process.
Asunto(s)
Genómica , Ballenas , Animales , Núcleo Celular , Filogenia , Ballenas/anatomía & histología , Ballenas/genéticaRESUMEN
Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.
Asunto(s)
Orca , Animales , Genoma , Homocigoto , Endogamia , Masculino , Polimorfismo de Nucleótido Simple , Densidad de Población , Orca/genéticaRESUMEN
Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.
Asunto(s)
Flujo Génico , Genoma , Orca/genética , Alelos , Animales , Regiones Antárticas , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/genética , Flujo Genético , Variación Genética , Geografía , Cadenas de Markov , Modelos Genéticos , Filogenia , Análisis de Componente PrincipalRESUMEN
In the context of a changing climate, understanding the environmental drivers of marine megafauna distribution is important for conservation success. The extent of humpback whale breeding habitats and the impact of temperature variation on their availability are both unknown. We used 19 years of dedicated survey data from seven countries and territories of Oceania (1,376 survey days), to investigate humpback whale breeding habitat diversity and adaptability to climate change. At a fine scale (1 km resolution), seabed topography was identified as an important influence on humpback whale distribution. The shallowest waters close to shore or in lagoons were favored, although humpback whales also showed flexible habitat use patterns with respect to shallow offshore features such as seamounts. At a coarse scale (1° resolution), humpback whale breeding habitats in Oceania spanned a thermal range of 22.3-27.8°C in August, with interannual variation up to 2.0°C. Within this range, both fine and coarse scale analyses of humpback whale distribution suggested local responses to temperature. Notably, the most detailed dataset was available from New Caledonia (774 survey days, 1996-2017), where encounter rates showed a negative relationship to sea surface temperature, but were not related to the El Niño Southern Oscillation or the Antarctic Oscillation from previous summer, a proxy for feeding conditions that may impact breeding patterns. Many breeding sites that are currently occupied are predicted to become unsuitably warm for this species (>28°C) by the end of the 21st century. Based on modeled ecological relationships, there are suitable habitats for relocation in archipelagos and seamounts of southern Oceania. Although distribution shifts might be restrained by philopatry, the apparent plasticity of humpback whale habitat use patterns and the extent of suitable habitats support an adaptive capacity to ocean warming in Oceania breeding grounds.
RESUMEN
Some marine mammals are so rarely seen that their life history and social structure remain a mystery. Around New Zealand, Gray's beaked whales (Mesoplodon grayi) are almost never seen alive, yet they are a commonly stranded species. Gray's are unique among the beaked whales in that they frequently strand in groups, providing an opportunity to investigate their social organization. We examined group composition and genetic kinship in 113 Gray's beaked whales with samples collected over a 20-year period. Fifty-six individuals stranded in 19 groups (2 or more individuals), and 57 whales stranded individually. Mitochondrial control region haplotypes and microsatellite genotypes (16 loci) were obtained for 103 whales. We estimated pairwise relatedness between all pairs of individuals and average relatedness within, and between, groups. We identified 6 mother-calf pairs and 2 half-siblings, including 2 whales in different strandings 17 years and 1500 km apart. Surprisingly, none of the adults stranding together were related suggesting that groups are not formed through the retention of kin. These data suggest that both sexes may disperse from their mothers, and groups consisting of unrelated subadults are common. We also found no instances of paternity within the groups. Our results provide the first insights into dispersal, social organization, and the mating system in this rarely sighted species. Why whales strand is still unknown but, in Gray's beaked whales, the dead can tell us much about the living.
Asunto(s)
Genética de Población , Ballenas/genética , Animales , ADN Mitocondrial/genética , Femenino , Genotipo , Haplotipos , Masculino , Repeticiones de Microsatélite , Nueva Zelanda , Análisis de Secuencia de ADNRESUMEN
For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of using culturally transmitted vocal patterns as a way of defining connectivity to infer population structure. We suggest vocal patterns be incorporated by the International Whaling Commission in conjunction with traditional methods in the assessment of structure.
Estructura Poblacional de las Yubartas en el Centro y Occidente del Sur del Océano Pacífico, Determinada por el Intercambio Vocal entre las Poblaciones Resumen La estructura poblacional de los cetáceos se determina tradicionalmente por medio de genética molecular o individuos identificados fotográficamente. Sin embargo, los datos acústicos han proporcionado información sobre el movimiento y la estructura poblacional de una variedad de taxones con menos esfuerzo y menos costo que los métodos tradicionales. Las yubartas macho (Megaptera novaeangliae) producen una demostración vocal sexual, o canto, en continua evolución que es similar entre todos los machos en una población. La transmisión cultural rápida (la transferencia de información o comportamientos entre co-específicos por medio del aprendizaje social) de diferentes versiones de esta demostración entre poblaciones distintas pero interconectadas en el centro y occidente en la región del sur del Pacífico presenta una manera única para investigar la estructura poblacional con base en las dinámicas de movimiento de la demostración del canto (acústico). Al usar once años de datos, con base en la acústica investigamos a una estructura poblacional de la región al comparar secuencias estereotipadas de cantos entre las poblaciones y los años. Usamos la técnica de la distancia Levenshtein para agrupar poblaciones previamente definidas en grupos (con base vocal) basados en la similitud general de su canto en el espacio y el tiempo. Identificamos a los siguientes grupos vocales perceptibles: grupo occidental, una población al este de Australia; grupo central, poblaciones alrededor de Nueva Caledonia, Tonga y Samoa Americana; y región oriental, ya sea un grupo único o dos grupos, uno alrededor de las Islas Cook y el otro cerca de la Polinesia Francesa. Estos resultados son consistentes con la hipótesis de que cada conjunto reproductivo representa a una población distinta (cada una ocupó un nodo terminal único) en una meta-población, similar al entendimiento actual de la estructura poblacional con base en los estudios genéticos y de foto-identificación. Sin embargo, el grupo vocal central tuvo niveles más altos de cantos compartidos entre las poblaciones que en los otros grupos, lo que indica que los niveles de conectividad vocal variaron dentro de la región. Nuestros resultados demuestran la utilidad y el valor de usar patrones vocales transmitidos culturalmente como una forma de definir la conectividad para inferir la estructura poblacional. Sugerimos que los patrones vocales sean incorporados por la Comisión Internacional de Caza de Ballenas en conjunto con los métodos tradicionales de evaluación de la estructura.
Asunto(s)
Conservación de los Recursos Naturales , Yubarta/fisiología , Vocalización Animal , Migración Animal , Animales , Masculino , Nueva Caledonia , Océano Pacífico , Polinesia , Dinámica Poblacional , Queensland , Estaciones del AñoRESUMEN
The reef manta ray Mobula alfredi is present throughout most island groups that form the Raja Ampat archipelago, Indonesia. The species is protected regionally and nationally and is currently managed as a single homogeneous population within the 6.7 million ha archipelago. However, scientific evidence is currently lacking regarding the spatial connectivity and population structure of M. alfredi within this archipelago. Using network analysis and an array of 34 acoustic receivers deployed throughout Raja Ampat between February 2016 and September 2021, we examined the movements of 72 subadult and adult M. alfredi tagged in seven regions of Raja Ampat. A total of 1094 M. alfredi movements were recorded and were primarily concentrated between nearby receiver stations, highlighting frequent local movements within, and limited long-distance movements between regional acoustic receiver arrays. Network analysis revealed highly connected nodes acting as hubs important for M. alfredi movements. A community detection algorithm further indicated clusters within the network. Our results suggest the existence of a metapopulation comprising three demographically and geographically distinct subpopulations within the archipelago. They also reveal the importance of Eagle Rock as a critical node in the M. alfredi movement network, justifying the urgent inclusion of this site within the Raja Ampat marine protected area network.
RESUMEN
Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers.
Asunto(s)
Sedimentos Geológicos , Yubarta/fisiología , Procesamiento de Señales Asistido por Computador , Canto , Sonido , Agua , Animales , Evolución Biológica , Análisis por Conglomerados , Masculino , Movimiento (Física) , Océanos y Mares , Espectrografía del Sonido , Factores de TiempoRESUMEN
The identification of patterns in trait evolution is essential to understand the interaction of evolutionary forces, and provides useful information for species management. Cetaceans are a phylogenetically well-resolved infraorder that exhibit distinct trait variation across behavioral, molecular, and life history dimensions, yet few researchers have applied a meta-analytic or comparative approach to these traits. To understand cetacean trait evolution, we used a phylogenetic generalized least squares approach to examine the cognitive buffer hypothesis (CBH). A large brain should buffer individuals against environmental challenges through increasing survival rates, and a longer lifespan should buffer individuals against the cost of extended development for larger brains according to the CBH, leading to an expected positive correlation between brain size and lifespan. In contrast to this expectation, previously observed in taxa including primates, we found a negative correlation between brain size and lifespan in cetaceans. This suggests cetaceans experience selective pressures different from most other mammals in these traits but may be more similar to some social mammalian carnivores that display alloparenting. We also provide a comprehensive dataset to explore additional aspects of trait evolution but which would greatly benefit from studies on behavioral ecology across cetaceans and increased focus on data deficient species.
Asunto(s)
Carnívoros , Rasgos de la Historia de Vida , Animales , Filogenia , Longevidad , Tamaño de los Órganos , Cetáceos/genética , Encéfalo , Primates , Evolución BiológicaRESUMEN
Anthropogenic stressors, such as plastics and fishing, are putting coastal habitats under immense pressure. However, sound pollution from small boats has received little attention given the importance of sound in the various life history strategies of many marine animals. By combining passive acoustic monitoring, propagation modelling, and hearing threshold data, the impact of small-boat sound on the listening spaces of four coastal species was determined. Listening space reductions (LSR) were greater for fishes compared to crustaceans, for which LSR varied by day and night, due to their greater hearing abilities. Listening space also varied by sound modality for the two fish species, highlighting the importance of considering both sound pressure and particle motion. The theoretical results demonstrate that boat sound hinders the ability of fishes to perceive acoustic cues, advocating for future field-based research on acoustic cues, and highlighting the need for effective mitigation and management of small-boat sound within coastal areas worldwide.
Asunto(s)
Decápodos , Navíos , Animales , Sonido , Percepción Auditiva , Audición , Acústica , PecesRESUMEN
The age of an individual is an essential demographic parameter but is difficult to estimate without long-term monitoring or invasive sampling. Epigenetic approaches are increasingly used to age organisms, including nonmodel organisms such as cetaceans. Maui dolphins (Cephalorhynchus hectori maui) are a critically endangered subspecies endemic to Aotearoa New Zealand, and the age structure of this population is important for informing conservation. Here we present an epigenetic clock for aging Maui and Hector's dolphins (C. h. hectori) developed from methylation data using DNA from tooth aged individuals (n = 48). Based on this training data set, the optimal model required only eight methylation sites, provided an age correlation of .95, and had a median absolute age error of 1.54 years. A leave-one-out cross-validation analysis with the same parameters resulted in an age correlation of .87 and median absolute age error of 2.09 years. To improve age estimation, we included previously published beluga whale (Delphinapterus leucas) data to develop a joint beluga/dolphin clock, resulting in a clock with comparable performance and improved estimation of older individuals. Application of the models to DNA from skin biopsy samples of living Maui dolphins revealed a shift from a median age of 8-9 years to a younger population aged 7-8 years 10 years later. These models could be applied to other dolphin species and demonstrate the ability to construct a clock even when the number of known age samples is limited, removing this impediment to estimating demographic parameters vital to the conservation of critically endangered species.
RESUMEN
The identification and characterization of reproductively isolated subpopulations or 'stocks' are essential for effective conservation and management decisions. This can be difficult in vagile marine species like marine mammals. We used paternity assignment and 'gametic recapture' to examine the reproductive autonomy of southern right whales (Eubalaena australis) on their New Zealand (NZ) calving grounds. We derived DNA profiles for 34 mother-calf pairs from skin biopsy samples, using sex-specific markers, 13 microsatellite loci and mtDNA haplotypes. We constructed DNA profiles for 314 adult males, representing 30% of the census male abundance of the NZ stock, previously estimated from genotypic mark-recapture modelling to be 1085 (95% CL 855, 1416). Under the hypothesis of demographic closure and the assumption of equal reproductive success among males, we predict: (i) the proportion of paternities assigned will reflect the proportion of the male population sampled and (ii) the gametic mark-recapture (GMR) estimate of male abundance will be equivalent to the census male estimate for the NZ stock. Consistent with these predictions, we found that the proportion of assigned paternities equalled the proportion of the census male population size sampled. Using the sample of males as the initial capture, and paternity assignment as the recapture, the GMR estimate of male abundance was 1001 (95% CL 542, 1469), similar to the male census estimate. These findings suggest that right whales returning to the NZ calving ground are reproductively autonomous on a generational timescale, as well as isolated by maternal fidelity on an evolutionary timescale, from others in the Indo-Pacific region.
Asunto(s)
Paternidad , Densidad de Población , Ballenas/genética , Animales , Dermatoglifia del ADN/métodos , ADN Mitocondrial , Femenino , Haplotipos , Masculino , Repeticiones de Microsatélite , Modelos Teóricos , Nueva ZelandaRESUMEN
Understanding the foraging ecology of animals gives insights into their trophic relationships and habitat use. We used stable isotope analysis to understand the foraging ecology of a critically endangered marine predator, the Maui dolphin. We analysed carbon and nitrogen isotope ratios of skin samples (n = 101) collected from 1993 to 2021 to investigate temporal changes in diet and niche space. Genetic monitoring associated each sample with a DNA profile which allowed us to assess individual and population level changes in diet. Potential prey and trophic level indicator samples were also collected (n = 166; 15 species) and incorporated in Bayesian mixing models to estimate importance of prey types to Maui dolphin diet. We found isotopic niche space had decreased over time, particularly since the 2008 implementation of a Marine Mammal Sanctuary. We observed a decreasing trend in ∂13C and ∂15N values, but this was not linear and several fluctuations in isotope values occurred over time. The largest variation in isotope values occurred during an El Niño event, suggesting that prey is influenced by climate-driven oceanographic variables. Mixing models indicated relative importance of prey remained constant since 2008. The isotopic variability observed here is not consistent with individual specialization, rather it occurs at the population level.
RESUMEN
The migration routes of wide-ranging species can be difficult to study, particularly at sea. In the western South Pacific, migratory routes of humpback whales between breeding and feeding areas are unclear. Male humpback whales sing a population-specific song, which can be used to match singers on migration to a breeding population. To investigate migratory routes and breeding area connections, passive acoustic recorders were deployed in the central New Zealand migratory corridor (2016); recorded humpback whale song was compared to song from the closest breeding populations of East Australia and New Caledonia (2015-2017). Singing northbound whales migrated past New Zealand from June to August via the east coast of the South Island and Cook Strait. Few song detections were made along the east coast of the North Island. New Zealand song matched New Caledonia song, suggesting a migratory destination, but connectivity to East Australia could not be ruled out. Two song types were present in New Zealand, illustrating the potential for easterly song transmission from East Australia to New Caledonia in this shared migratory corridor. This study enhances our understanding of western South Pacific humpback whale breeding population connectivity, and provides novel insights into the dynamic transmission of song culture.
RESUMEN
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.