Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 49(4): 1148-1156, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34651220

RESUMEN

PURPOSE: Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that plays a major role in brain cholesterol homeostasis by converting cholesterol into 24S-hydroxycholesterol. The selective CH24H inhibitor soticlestat (TAK-935) is being pursued as a drug for treatment of seizures in developmental and epileptic encephalopathies. Herein, we describe the successful discovery and the preclinical validation of the novel radiolabeled CH24H ligand (3-[18F]fluoroazetidin-1-yl){1-[4-(4-fluorophenyl)pyrimidin-5-yl]piperidin-4-yl}methanone ([18F]T-008) and its tritiated analog, [3H]T-008. METHODS: In vitro autoradiography (ARG) studies in the CH24H wild-type (WT) and knockout (KO) mouse brain sections were conducted using [3H]T-008. PET imaging was conducted in two adult rhesus macaques using [18F]T-008. Each macaque received two test-retest baseline scans and a series of two blocking doses of soticlestat administered prior to [18F]T-008 to determine the CH24H enzyme occupancy. PET data were analyzed with Logan graphical analysis using plasma input. A Lassen plot was applied to estimate CH24H enzyme occupancy by soticlestat. RESULTS: In ARG studies, binding of [3H]T-008 was specific to CH24H in the mouse brain sections, which was not observed in CH24H KO or in wild-type mice after pretreatment with soticlestat. In rhesus PET studies, the rank order of [18F]T-008 uptake was striatum > cortical regions > cerebellum, which was consistent with CH24H distribution in the brain. Pre-blocking with soticlestat reduced the maximum uptake and increased the washout in all brain regions in a dose-dependent manner. Calculated global occupancy values for soticlestat at a dose of 0.89 mg/kg were 97-98%, indicating maximum occupancy. CONCLUSION: The preclinical in vitro and in vivo evaluation of labeled T-008 demonstrates that [18F]T-008 is suitable for imaging CH24H in the brain and warrants further studies in humans.


Asunto(s)
Piperidinas , Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Humanos , Macaca mulatta/metabolismo , Ratones , Tomografía de Emisión de Positrones/métodos , Piridinas
2.
Eur J Nucl Med Mol Imaging ; 47(13): 3176-3185, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32535652

RESUMEN

PURPOSE: The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS: [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS: One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS: [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Adolescente , Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Radioisótopos de Flúor , Humanos , Isoquinolinas , Cinética , Masculino , Tomografía de Emisión de Positrones , Piridinas , Radiofármacos , Proteínas tau/metabolismo
3.
J Labelled Comp Radiopharm ; 62(1): 34-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414212

RESUMEN

So far, no suitable 5-HT7 R radioligand exists for clinical positron emission tomography (PET) imaging. [18 F]2FP3 was first tested in vivo in cats, and the results were promising for further evaluations. Here, we evaluate the radioligand in pigs and non-human primates (NHPs). Furthermore, we investigate species differences in 5-HT7 R binding with [3 H]SB-269970 autoradiography in post-mortem pig, NHP, and human brain tissue. Specific binding of [18 F]2FP3 was investigated by intravenous administration of the 5-HT7 R specific antagonist SB-269970. [3 H]SB-269970 autoradiography was performed as previously described. [18 F]2FP3 was synthesized in an overall yield of 35% to 45%. High brain uptake of the tracer was found in both pigs and NHPs; however, pretreatment with SB-269970 only resulted in decreased binding of 20% in the thalamus, a 5-HT7 R-rich region. Autoradiography on post-mortem pig, NHP, and human tissues revealed that specific binding of [3 H]SB-269970 was comparable in the thalamus of pig and NHP. Despite the high uptake of [18 F]2FP3 in both species, the binding could only be blocked to a limited degree with the 5-HT7 R antagonists. We speculate that the affinity of the radioligand is too low for imaging the 5-HT7 Rs in vivo and that part of the PET signal arises from targets other than the 5-HT7 R.


Asunto(s)
Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Radiofármacos/farmacocinética , Antagonistas de la Serotonina/química , Animales , Femenino , Macaca mulatta , Masculino , Fenoles/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Receptores de Serotonina/metabolismo , Sulfonamidas/farmacocinética , Porcinos
4.
Synapse ; 71(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27864853

RESUMEN

Imaging the high-affinity, functional state (HA) of dopamine D2 and D3 receptors has been pursued in PET imaging studies of various brain functions. We report further evaluation of 18 F-5-OH-FPPAT, and the newer 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT. Syntheses of 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT were improved by modifications of our previously reported procedures. Brain slices and brain homogenates from male Sprague-Dawley rats were used with the 3 radiotracers (74-111 kBq/cc). Competition with dopamine (1-100 nM) and Gpp(NH)p (10-50 µM) were carried out to demonstrate binding to dopamine D2 and D3 HA-states and binding kinetics of 18 F-5-OH-FPPAT measured. Ex vivo brain slice autoradiography was carried out on rats administered with 18 F-5-OH-FHXPAT to ascertain HA-state binding. PET/CT imaging in rats and wild type (WT) and D2 knock-out mice were carried out using 18 F-7-OH-FHXPAT (2-37 MBq). Striatum was clearly visualized by the three radiotracers in brain slices and dopamine displaced more than 80% of binding, with dissociation rate in homogenates of 2.2 × 10-2 min-1 for 18 F-5-OH-FPPAT. Treatment with Gpp(NH)p significantly reduced 50-80% striatal binding with faster dissociation rates (5.0 × 10-2 min-1 ), suggesting HA-state binding of 18 F-5-OH-FPPAT and 18 F-5-OH-FHXPAT. Striatal binding of 18 F-5-OH-FHXPAT in ex vivo brain slices were sensitive to Gpp(NH)p, suggesting HA-state binding in vivo. PET binding ratios of 18 F-7-OH-FHXPAT in rat brain were ventral striatum/cerebellum = 2.09 and dorsal striatum/cerebellum = 1.65; similar binding ratios were found in the D2 WT mice. These results suggest that in vivo PET measures of agonists in the brain at least in part reflect binding to the membrane-bound HA-state of the dopamine receptor.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacología , Receptores de Dopamina D2/análisis , Receptores de Dopamina D3/análisis , Animales , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Tetrahidronaftalenos/farmacología
5.
Synapse ; 70(4): 163-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26806100

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aß plaques in postmortem human brain (AD and normal control (NC)). METHODS: Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aß plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. RESULTS: The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/µmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aß plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. CONCLUSION: [(11)C]TAZA exhibited high binding to Aß plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , p-Dimetilaminoazobenceno/análogos & derivados , Compuestos de Anilina , Animales , Benzotiazoles/farmacocinética , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Imagen Multimodal , Unión Proteica , Radiofármacos/síntesis química , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Tiazoles , Distribución Tisular , Tomografía Computarizada por Rayos X , Imagen de Cuerpo Entero , p-Dimetilaminoazobenceno/síntesis química , p-Dimetilaminoazobenceno/farmacocinética
6.
Synapse ; 69(12): 577-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26422464

RESUMEN

Identification of dopamine D3 receptors (D3R) in vivo is important to understand several brain functions related to addiction. The goal of this work was to identify D3R binding of the dopamine D2 receptor (D2R)/D3R imaging agent, (18)F-fallypride. Brain slices from male Sprague-Dawley rats (n = 6) and New Zealand White rabbits (n = 6) were incubated with (18)F-fallypride and D3R selective agonist (R)-7-OH-DPAT (98-fold D3R selective). Rat slices were also treated with BP 897 (68-fold D3R selective partial agonist) and NGB 2904 (56-fold D3R selective antagonist). In vivo rat studies (n = 6) were done on Inveon PET using 18-37 MBq (18)F-fallypride and drug-induced displacement by (R)-7-OH-DPAT, BP 897 and NGB 2904. PET/CT imaging of wild type (WT, n = 2) and D2R knock-out (KO, n = 2) mice were carried out with (18)F-fallypride. (R)-7-OH-DPAT displaced binding of (18)F-fallypride, both in vitro and in vivo. In vitro, at 10 nM (R)-7-OH-DPAT, (18)F-fallypride binding in the rat ventral striatum (VST) and dorsal striatum (DST) and rabbit nucleus accumbens were reduced by ∼10-15%. At 10 µM (R)-7-OH-DPAT all regions in rat and rabbit were reduced by ≥85%. In vivo reductions for DST and VST before and after (R)-7-OH-DPAT were: low-dose (0.015 mg kg(-1)) DST -22%, VST -29%; high-dose (1.88 mg kg(-1)) DST -58%, VST -77%, suggesting D3R/D2R displacement. BP 897 and NGB 2904 competed with (18)F-fallypride in vitro, but unlike BP 897, NGB 2904 did not displace (18)F-fallypride in vivo. The D2R KO mice lacked (18)F-fallypride binding in the DST. In summary, our findings suggest that up to 20% of (18)F-fallypride may be bound to D3R sites in vivo.


Asunto(s)
Benzamidas/farmacocinética , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Pirrolidinas/farmacocinética , Radiofármacos/farmacocinética , Receptores de Dopamina D3/metabolismo , Animales , Encéfalo/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Fluorenos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Unión Proteica , Conejos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inhibidores , Especificidad de la Especie , Tetrahidronaftalenos/farmacología , Distribución Tisular
7.
Synapse ; 69(2): 96-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25347981

RESUMEN

We report the use of ß3 adrenergic receptor mediated activation of rat brain frontal cortex using mirabegron (a selective ß3 adrenoceptor agonist), measured by (18)F-FDG PET/CT. Another ß3 agonist, CL 316,243, did not have this effect due to impermeability through the blood brain barrier (BBB), while atomoxetine, a norepinephrine transporter blocker, did increase (18)F-FDG uptake in the frontal cortex. Mirabegron exhibited a dose-dependent increase in frontal cortex (18)F-FDG uptake. These findings suggest a possible use of selective ß3 adrenoceptor agonists in reversing regional glucose hypometabolism in the brain.


Asunto(s)
Acetanilidas/farmacología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Dioxoles/farmacología , Fluorodesoxiglucosa F18/farmacocinética , Lóbulo Frontal/diagnóstico por imagen , Radiofármacos/farmacocinética , Tiazoles/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Lóbulo Frontal/efectos de los fármacos , Masculino , Imagen Multimodal , Tomografía de Emisión de Positrones , Ratas , Tomografía Computarizada por Rayos X
8.
Synapse ; 67(2): 79-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23080264

RESUMEN

Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the ß-adrenergic effects, propranolol (ß-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of ß(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates ß(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/efectos de los fármacos , Inhibidores de Captación Adrenérgica/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Clorhidrato de Atomoxetina , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fluorodesoxiglucosa F18/farmacología , Masculino , Obesidad/metabolismo , Propranolol/farmacología , Propilaminas/farmacología , Cintigrafía , Ratas , Ratas Sprague-Dawley
9.
Synapse ; 67(9): 596-608, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23504990

RESUMEN

INTRODUCTION: Serotonin 5-HT(1A) receptors have been investigated in various CNS disorders, including epilepsy, mood disorders, and neurodegeneration. [¹8F]Mefway (N-{2-[4-(2'-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(cis/trans-4'-[¹8F]fluoromethylcyclohexane)-carboxamide) has been developed as a suitable positron emission tomography (PET) imaging agent for these receptors. We have now evaluated the suitability of [¹8F]trans-mefway in rat and mouse models using PET and computerized tomography (CT) imaging and corroborated with ex vivo and in vitro autoradiographic studies. METHODS: Normal Sprague-Dawley rats and Balb/C mice were used for PET/CT imaging using intravenously injected [¹8F]trans-mefway. Brain PET data were coregistered with rat and mouse magnetic resonance imaging template and regional distribution of radioactivity was quantitated. Selected animals were used for ex vivo autoradiographic studies to confirm regional brain distribution and quantitative measures of binding, using brain region to cerebellum ratios. Binding affinity of trans-mefway and WAY-100635 was measured in rat brain homogenates. Distribution of [¹8F]trans-4-fluoromethylcyclohexane carboxylate ([¹8F]FMCHA), a major metabolite of [¹8F] trans-mefway, was assessed in the rat by PET/CT. RESULTS: The inhibition constant, K(i) for trans-mefway was 0.84 nM and that for WAY-100635 was 1.07 nM. Rapid brain uptake of [¹8F]trans-mefway was observed in all rat brain regions and clearance from cerebellum was fast and was used as a reference region in all studies. Distribution of [¹8F]trans-mefway in various brain regions was consistent in PET and in vitro studies. The dorsal raphe was visualized and quantified in the rat PET but identification in the mouse was difficult. The rank order of binding to the various brain regions was hippocampus > frontal cortex > anterior cingulate cortex > lateral septal nuclei > dorsal raphe nuclei. CONCLUSION: [¹8F]trans-Mefway appears to be an effective 5-HT(1A) receptor imaging agent in rodents for studies of various disease models.


Asunto(s)
Encéfalo/diagnóstico por imagen , Piperazinas/farmacología , Tomografía de Emisión de Positrones , Piridinas/farmacología , Radiofármacos/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Animales , Radioisótopos de Flúor/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Antagonistas del Receptor de Serotonina 5-HT1/farmacología
10.
J Nucl Med ; 64(12): 1972-1979, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37770111

RESUMEN

This series of studies characterized [18F]T-008, a PET radiotracer for imaging cholesterol 24-hydroxylase (CH24H), in healthy volunteers (ClinicalTrials.gov identifier NCT02497235). Assessments included radiation dosimetry, kinetic modeling, test-retest variability (TRT) evaluation, and a dose occupancy evaluation using soticlestat, a selective CH24H inhibitor. Soticlestat is currently in phase 3 development for the treatment of seizures in Dravet syndrome and Lennox-Gastaut syndrome. Methods: In the dosimetry study, 5 participants (3 men) underwent serial whole-body scans to estimate organ-absorbed doses and effective doses of [18F]T-008 using OLINDA/EXM 1.1. For the kinetic modeling and TRT study, 6 participants (all men) underwent two 210-min dynamic [18F]T-008 PET scans with arterial blood sampling. The regional total volume of distribution was estimated using a 1-tissue-compartment model, a 2-tissue-compartment model, and Logan graphic analysis. In the dose occupancy study, 11 participants (all men) underwent 120-min scans at baseline and 2 time points (peak and trough) after receiving single oral doses of soticlestat (50-600 mg). The relationship between effect-site soticlestat concentration and brain occupancy was evaluated with a specially developed pharmacokinetic model and a saturable maximal occupancy model. Results: The estimated mean whole-body effective dose was 0.0292 mSv/MBq (SD, 0.00147 mSv/MBq). [18F]T-008 entered the brain rapidly, with a distribution consistent with known CH24H distribution densities. The 2-tissue-compartment model and Logan graphic analysis best described the tracer kinetics. The mean TRT for estimating total volume of distribution was 7%-15%. Single doses of soticlestat in the range 50-600 mg resulted in occupancies of 64%-96% at 2 h and 11%-79% at 24 h. The estimated half-maximal effect-site concentration of soticlestat was 5.52 ng/mL. Conclusion: [18F]T-008 is a suitable PET radiotracer for quantitatively analyzing CH24H in the human brain. Using [18F]T-008 and PET, we demonstrated that soticlestat was brain-penetrant and established target engagement by displacing [18F]T-008 in a dose-dependent manner in the brain.


Asunto(s)
Tomografía de Emisión de Positrones , Radiometría , Humanos , Masculino , Colesterol 24-Hidroxilasa , Ligandos , Tomografía de Emisión de Positrones/métodos , Femenino
11.
Synapse ; 66(5): 418-34, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22213342

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) in the brain are important for cognitive function; however, their specific role in relevant brain regions remains unclear. In this study, we used the novel compound ¹8F-nifene to examine the distribution of nAChRs in the rat forebrain, and for individual animals related the results to behavioral performance on an auditory-cognitive task. We first show negligible binding of ¹8F-nifene in mice lacking the ß2 nAChR subunit, consistent with previous findings that ¹8F-nifene binds to α4ß2* nAChRs. We then examined the distribution of ¹8F-nifene in rat using three methods: in vivo PET, ex vivo PET and autoradiography. Generally, ¹8F-nifene labeled forebrain regions known to contain nAChRs, and the three methods produced similar relative binding among regions. Importantly, ¹8F-nifene also labeled some white matter (myelinated axon) tracts, most prominently in the temporal subcortical region that contains the auditory thalamocortical pathway. Finally, we related ¹8F-nifene binding in several forebrain regions to each animal's performance on an auditory-cued, active avoidance task. The strongest correlations with performance after 14 days training were found for ¹8F-nifene binding in the temporal subcortical white matter, subiculum, and medial frontal cortex (correlation coefficients, r > 0.8); there was no correlation with binding in the auditory thalamus or auditory cortex. These findings suggest that individual performance is linked to nicotinic functions in specific brain regions, and further support a role for nAChRs in sensory-cognitive function.


Asunto(s)
Reacción de Prevención/fisiología , Radioisótopos de Flúor/farmacocinética , Prosencéfalo/metabolismo , Piridinas/farmacocinética , Pirroles/farmacocinética , Receptores Nicotínicos/metabolismo , Animales , Autorradiografía , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Fibras Nerviosas Mielínicas/diagnóstico por imagen , Fibras Nerviosas Mielínicas/metabolismo , Tomografía de Emisión de Positrones , Prosencéfalo/diagnóstico por imagen , Radiofármacos , Ratas , Ratas Sprague-Dawley , Tálamo/diagnóstico por imagen , Tálamo/metabolismo
12.
Eur J Med Chem ; 240: 114612, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863274

RESUMEN

Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.


Asunto(s)
Tomografía de Emisión de Positrones , Piridinas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Ratones , Piperidinas/metabolismo , Piperidinas/farmacología , Tomografía de Emisión de Positrones/métodos , Piridinas/metabolismo
13.
Synapse ; 65(8): 778-87, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21218455

RESUMEN

In this study, we compared two different D(2/3) receptor ligands, [¹8F]fallypride and [¹8F]desmethoxyfallypride ([¹8F]DMFP) with respect to the duration of the scan, visualization of extrastriatal receptors, and binding potentials (BP(ND) ) in the rat brain. In addition, we studied the feasibility of using these tracers following a period of awake tracer uptake, during which the animal may perform a behavioral task. Male Sprague-Dawley rats were imaged with [¹8F]fallypride and with [¹8F]DMFP in four different studies using microPET. All scans were performed under isoflurane anesthesia. The first (test) and second (retest) study were 150-min baseline scans. No retest scans were performed with [¹8F]DMFP. A third study was a 60-min awake uptake of radiotracer followed by a 90-min scan. A fourth study was a 150-min competition scan with haloperidol (0.2 mg/kg) administered via tail vein at 90-min post-[¹8F]fallypride injection and 60-min post-[¹8F]DMFP. For the test-retest studies, BP(ND) was measured using both Logan noninvasive (LNI) method and the interval ratios (ITR) method. Cerebellum was used as a reference region. For the third study, the binding was measured only with the ITR method, and the results were compared to the baseline results. Studies showed that the average transient equilibrium time in the dorsal striatum (DSTR) was at 90 min for [¹8F]fallypride and 30 min for [¹8F]DMFP. The average BP(ND) for [¹8F]fallypride was 14.4 in DSTR, 6.8 in ventral striatum (VSTR), 1.3 in substantia nigra/ventral tegmental area (SN/VTA), 1.4 in colliculi (COL), and 1.5 in central gray area. In the case of [¹8F]DMFP, the average BP(ND) values were 2.2 in DSTR, 2.7 in VSTR, and 0.8 in SN/VTA. The haloperidol blockade showed detectable decrease in binding of both tracers in striatal regions with a faster displacement of [¹8F]DMFP. No significant changes in BP(ND) of [¹8F]fallypride due to the initial awake state of the animal were found, whereas BP(ND) of [¹8F]DMFP was significantly higher in the awake state compared to baseline. We were able to demonstrate that dynamic PET using MicroPET Inveon allows quantification of both striatal and extrastriatal [¹8F]fallypride binding in rats in vivo. Quantification of the striatal regions could be achieved with [¹8F]DMFP.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Salicilamidas/farmacocinética , Animales , Radioisótopos de Flúor/farmacocinética , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
14.
J Med Chem ; 64(7): 3780-3793, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33729758

RESUMEN

Dysregulation of histone H3 lysine 4 (H3K4) methylation is implicated in the pathogenesis of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) determines the methylation status of H3K4 through flavin adenine dinucleotide (FAD)-mediated histone demethylation. Therefore, LSD1 inhibition in the brain can be a novel therapeutic option for treating these disorders. Positron emission tomography (PET) imaging of LSD1 allows for investigating LSD1 expression levels under normal and disease conditions and validating target engagement of therapeutic LSD1 inhibitors. This study designed and synthesized (2-aminocyclopropyl)phenyl derivatives with irreversible binding to LSD1 as PET imaging agents for LSD1 in the brain. We optimized lipophilicity of the lead compound to minimize the risk of nonspecific binding and identified 1e with high selectivity over monoamine oxidase A and B, which are a family of FAD-dependent enzymes homologous to LSD1. PET imaging in a monkey showed a high uptake of [18F]1e to regions enriched with LSD1, indicating its specific binding to LSD1.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/metabolismo , Ciclopropanos/metabolismo , Histona Demetilasas/metabolismo , Animales , Línea Celular , Medios de Contraste/síntesis química , Ciclopropanos/síntesis química , Diseño de Fármacos , Humanos , Macaca mulatta , Masculino , Tomografía de Emisión de Positrones , Unión Proteica , Ratas , Porcinos
15.
J Nucl Med ; 62(9): 1307-1313, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33579806

RESUMEN

Non-catechol-based high-affinity selective dopamine D1 receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic 18F-MNI-800 and its more active atropisomeric (-)-enantiomer, 18F-MNI-968. Methods: Ten brain PET experiments were conducted with 18F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with 18F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques. PET data were analyzed with both plasma-input-based methods and reference-region-based methods. Whole-body PET images were acquired with 18F-MNI-800 from 2 adult rhesus macaques for radiation dosimetry estimates. Results:18F-MNI-800 and 18F-MNI-968 exhibited regional uptake consistent with D1R distribution. Specificity and selectivity were demonstrated by dose-dependent blocking with the D1 antagonist SCH-23390. 18F-MNI-968 showed a 30% higher specific signal than 18F-MNI-800, with a nondisplaceable binding potential of approximately 0.3 in the cortex and approximately 1.1 in the striatum. Dosimetry radiation exposure was favorable, with an effective dose of about 0.023 mSv/MBq. Conclusion:18F-MNI-968 has significant potential as a D1R agonist PET radiotracer, and further characterization in human subjects is warranted.


Asunto(s)
Dopamina , Tomografía de Emisión de Positrones , Animales , Macaca mulatta , Imagen de Cuerpo Entero
16.
Psychopharmacology (Berl) ; 237(11): 3435-3446, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32813030

RESUMEN

RATIONALE: Drugs that rapidly increase dopamine levels have an increased risk of abuse. Dasotraline (DAS) is a dopamine and norepinephrine reuptake inhibitor characterized by slow oral absorption with low potential for abuse. However, it remains unclear whether intravenous (i.v.) administration would facilitate the rapid elevation of dopamine levels associated with stimulant drugs. OBJECTIVE: To assess the kinetics of DAS across the blood-brain barrier and time to onset of dopamine transporters (DAT) inhibition. METHODS: We compared the onset of DAT occupancy and the associated elevation of synaptic dopamine levels in rhesus monkey following i.v. administration of DAS or methylphenidate (MPH) using positron emission tomography (PET). Brain entry times were estimated by reductions in [18F]-FE-PE2I binding to DAT in rhesus monkeys. Elevations of synaptic dopamine were estimated by reductions in [11C]-Raclopride binding to D2 receptors. RESULTS: Intravenous administration of DAS (0.1 and 0.2 mg/kg) resulted in striatal DAT occupancies of 54% and 68%, respectively; i.v. administered MPH (0.1 and 0.5 mg/kg) achieved occupancies of 69% and 88% respectively. Brain entry times of DAS (22 and 15 min, respectively) were longer than for MPH (3 and 2 min). Elevations in synaptic dopamine were similar for both DAS and MPH however the time for half-maximal displacement by MPH (t = 23 min) was 4-fold more rapid than for DAS (t = 88 min). CONCLUSIONS: These results demonstrate that the pharmacodynamics effects of DAS on DAT occupancy and synaptic dopamine levels are more gradual in onset than those of MPH even with i.v. administration that is favored by recreational drug abusers.


Asunto(s)
1-Naftilamina/análogos & derivados , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , 1-Naftilamina/administración & dosificación , 1-Naftilamina/metabolismo , Administración Intravenosa , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/metabolismo , Femenino , Macaca mulatta , Masculino , Metilfenidato/administración & dosificación , Metilfenidato/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D2/metabolismo
17.
Alcohol Clin Exp Res ; 33(1): 139-49, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18976347

RESUMEN

BACKGROUND: The mesolimbic dopamine (DA) system is implicated in the development and maintenance of alcohol drinking; however, the exact mechanisms by which DA regulates human alcohol consumption are unclear. This study assessed the distinct effects of alcohol-related cues and alcohol administration on striatal DA release in healthy humans. METHODS: Subjects underwent 3 PET scans with [(11)C]raclopride (RAC). Subjects were informed that they would receive either an IV Ringer's lactate infusion or an alcohol (EtOH) infusion during scanning, with naturalistic visual and olfactory cues indicating which infusion would occur. Scans were acquired in the following sequence: (1) Baseline Scan: Neutral cues predicting a Ringer's lactate infusion, (2) CUES Scan: Alcohol-related cues predicting alcohol infusion in a Ringer's lactate solution, but with alcohol infusion after scanning to isolate the effects of cues, and (3) EtOH Scan: Neutral cues predicting Ringer's, but with alcohol infusion during scanning (to isolate the effects of alcohol without confounding expectation or craving). RESULTS: Relative to baseline, striatal DA concentration decreased during CUES, but increased during EtOH. CONCLUSION: While the results appear inconsistent with some animal experiments showing dopaminergic responses to alcohol's conditioned cues, they can be understood in the context of the hypothesized role of the striatum in reward prediction error, and of animal studies showing that midbrain dopamine neurons decrease and increase firing rates during negative and positive prediction errors, respectively. We believe that our data are the first in humans to demonstrate such changes in striatal DA during reward prediction error.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Señales (Psicología) , Dopamina/metabolismo , Etanol/administración & dosificación , Estimulación Luminosa/métodos , Adulto , Consumo de Bebidas Alcohólicas/psicología , Cuerpo Estriado/diagnóstico por imagen , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Valor Predictivo de las Pruebas , Proyectos de Investigación , Adulto Joven
18.
Phys Med Biol ; 54(9): 2885-99, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19384008

RESUMEN

We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with (18)F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a (22)Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Phi = 60, L = 150 mm) and mouse-like (Phi = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity (18)F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with (18)F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Animales , Procesamiento de Imagen Asistido por Computador , Ratones , Tomografía de Emisión de Positrones/métodos , Ratas , Dispersión de Radiación , Sensibilidad y Especificidad , Universidades
19.
Mol Imaging Biol ; 21(3): 509-518, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30084043

RESUMEN

PURPOSE: Synaptic vesicle protein 2A (SV2A) serves as a biomarker of synaptic density and positron emission tomography (PET) imaging of SV2A could provide a tool to assess progression of neurodegenerative diseases. Two tracers have primarily been reported and characterized in vivo: [11C]UCB-J and [18F]UCB-H. In early human studies, [11C]UCB-J showed promising results, while its F-18-labeled analogue [18F]UCB-H showed suboptimal specific signal in comparison to [11C]UCB-J. Considering the limited use of [11C]UCB-J to facilities with a cyclotron, having a F-18 variant would facilitate large, multicenter imaging trials. We have screened several F-18 derivatives of UCB-J in non-human primates and identified a promising F-18 PET candidate, [18F]MNI-1126, with additional investigations of the racemate [18F]MNI-1038, affording a signal comparable to [11C]UCB-J. PROCEDURES: F-18 derivatives of UCB-J and UCB-H were synthesized and administered to non-human primates for microPET imaging. Following screenings, [18F]MNI-1038 (racemate) and [18F]MNI-1126 (R-enantiomer) were identified with the highest signal and favorable kinetics and were selected for further imaging. Kinetic modeling with one- and two-tissue compartmental models, and linear methods were applied to PET data using metabolite-corrected arterial input function. Pre-block scans with levetiracetam (LEV, 10, 30 mg/kg, iv) were performed to determine the tracers' in vivo specificity for SV2A. Two whole-body PET studies were performed with [18F]MNI-1038 in one male and one female rhesus, and radiation absorbed dose estimates and effective dose (ED, ICRP-103) were estimated with OLINDA/EXM 2.0. RESULTS: All compounds screened displayed very good brain penetration, with a plasma-free fraction of ~ 40 %. [18F]MNI-1126 and [18F]MNI-1038 showed uptake and distribution the most consistent with UCB-J, while the other derivatives showed suboptimal results, with similar or lower uptake than [18F]UCB-H. VT of [18F]MNI-1126 and [18F]MNI-1038 was high in all gray matter regions (within animal averages ~ 30 ml/cm3) and highly correlated with [11C]UCB-J (r > 0.99). Pre-blocking of [18F]MNI-1126 or [18F]MNI-1038 with LEV showed robust occupancy across all gray matter regions, similar to that reported with [11C]UCB-J (~ 85 % at 30 mg/kg, ~ 65 % at 10 mg/kg). Using the centrum semiovale as a reference region, BPND of [18F]MNI-1126 reached values of up to ~ 30 to 40 % higher than those reported for [11C]UCB-J. From whole-body imaging average ED of [18F]MNI-1038 was estimated to be 22.3 µSv/MBq, with tracer being eliminated via both urinary and hepatobiliary pathways. CONCLUSIONS: We have identified a F-18-labeled tracer ([18F]MNI-1126) that exhibits comparable in vivo characteristics and specificity for SV2A to [11C]UCB-J in non-human primates, which makes [18F]MNI-1126 a promising PET radiotracer for imaging SV2A in human trials.


Asunto(s)
Radioisótopos de Flúor/química , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/química , Vesículas Sinápticas/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Macaca fascicularis , Macaca mulatta , Radiometría , Distribución Tisular
20.
IEEE Trans Med Imaging ; 26(3): 359-73, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17354641

RESUMEN

We have developed a nonparametric approach to the analysis of dynamic positron emission tomography (PET) data for extracting temporal characteristics of the change in endogenous neurotransmitter concentration in the brain. An algebraic method based on singular value decomposition (SVD) was applied to simulated data under both rest (neurotransmitter at baseline) and activated (transient neurotransmitter release) conditions. The resulting signals are related to the integral of the change in free neurotransmitter concentration in the tissue. Therefore, a specially designed minimum mean-square error (MMSE) filter must be applied to the signals to recover the desired temporal pattern of neurotransmitter change. To test the method, we simulated sets of realistic time activity curves representing uptake of [11C]raclopride, a dopamine (DA) receptor antagonist, in brain regions, under baseline and dopamine-release conditions. Our tests considered two scenarios: 1) a spatially homogeneous pattern with all voxels in the activated state presenting an identical DA signal; 2) a spatially heterogeneous pattern in which different DA signals were contained in different families of voxels. In the first case, we demonstrated that the timing of a single DA peak can be accurately identified to within 1 min and that two distinct neurotransmitter peaks can be distinguished. In the second case, separate peaks of activation separated by as little as 5 min can be distinguished. A decrease in blood flow during activation could not account for our findings. We applied the method to human PET data acquired with [11C]raclopride in the presence of transiently elevated DA due to intravenous (IV) alcohol. Our results for an area of the nucleus accumbens-a region relevant to alcohol consumption-agreed with a model-based method for estimating the DA response. SVD-based analysis of dynamic PET data promises a completely noninvasive and model-independent technique for determining the dynamics of a neurotransmitter response to cognitive or pharmacological stimuli. Our results indicate that the method is robust enough for application to voxel-by-voxel data.


Asunto(s)
Algoritmos , Dopamina/metabolismo , Etanol/administración & dosificación , Neurotransmisores/metabolismo , Núcleo Accumbens/metabolismo , Tomografía de Emisión de Positrones/métodos , Racloprida/farmacocinética , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Tasa de Depuración Metabólica/efectos de los fármacos , Modelos Neurológicos , Núcleo Accumbens/efectos de los fármacos , Radiofármacos/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA