Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7916): 873-877, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676486

RESUMEN

The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium1, which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs2, in at least one case there is evidence for an extreme magneto-ionic local environment3,4 and a compact persistent radio source5. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately [Formula: see text] parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies2,6, far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications.

2.
Nature ; 598(7880): 267-271, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34645999

RESUMEN

The event rate, energy distribution and time-domain behaviour of repeating fast radio bursts (FRBs) contain essential information regarding their physical nature and central engine, which are as yet unknown1,2. As the first precisely localized source, FRB 121102 (refs. 3-5) has been extensively observed and shows non-Poisson clustering of bursts over time and a power-law energy distribution6-8. However, the extent of the energy distribution towards the fainter end was not known. Here we report the detection of 1,652 independent bursts with a peak burst rate of 122 h-1, in 59.5 hours spanning 47 days. A peak in the isotropic equivalent energy distribution is found to be approximately 4.8 × 1037 erg at 1.25 GHz, below which the detection of bursts is suppressed. The burst energy distribution is bimodal, and well characterized by a combination of a log-normal function and a generalized Cauchy function. The large number of bursts in hour-long spans allows sensitive periodicity searches between 1 ms and 1,000 s. The non-detection of any periodicity or quasi-periodicity poses challenges for models involving a single rotating compact object. The high burst rate also implies that FRBs must be generated with a high radiative efficiency, disfavouring emission mechanisms with large energy requirements or contrived triggering conditions.

3.
Nature ; 583(7815): 211-214, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641814

RESUMEN

The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event1,2. Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass3,4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8)5, the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass (q > 0.9) binaries6. The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii7, and the two neutron stars are predicted to coalesce in [Formula: see text] million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.

4.
Nature ; 553(7687): 182-185, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323297

RESUMEN

Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

5.
Nature ; 541(7635): 58-61, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054614

RESUMEN

Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.

8.
Nature ; 531(7593): 202-5, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26934226

RESUMEN

Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

9.
Nature ; 439(7078): 817-20, 2006 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-16482150

RESUMEN

The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4-7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 x 10(13) G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and gamma-ray wavelengths.

10.
Science ; 329(5997): 1305, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20705813

RESUMEN

Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA