Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 79(5): 820-832, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31025960

RESUMEN

This study investigated the applicability of fluorescence excitation-emission matrix spectroscopy (EEMS) to assess total trihalomethane formation potentials (TTHMFPs) and the ability of magnetic ion exchange (MIEX®) resin to reduce TTHMFP. We treated a surface water and secondary wastewater effluent with MIEX mimicking full-scale operation by repeatedly exposing the same resin batch to additional feed water, with batches ranging from 500 to 5,000 resin bed volumes. Results showed that MIEX was more effective at removing or reducing ultraviolet absorbance (UVA254), dissolved organic carbon (DOC), and TTHMFP in surface water than in secondary effluent. The greater UVA254, DOC and TTHMFP removal for surface waters was explained by the stronger affinity of MIEX for terrestrial dissolved organic matter (DOM) compared to microbial DOM. Fluorescence EEMS results showed that the ratio between terrestrial and microbial fluorescent signals of DOM was significantly greater in surface water than in secondary effluent. Fluorescence surrogate parameters were strongly correlated with TTHMFP, namely, fluorescence intensity of humic-like peak C (R2 = 0.98, p < 0.01), protein-like peak T (R2 = 0.96, p < 0.01), and fulvic-like peak A (R2 = 0.87, p < 0.01). Correlations between fluorescence surrogate parameters and TTHMFP were substantially stronger than correlations between DOC and TTHMFP. Overall, the results indicate that fluorescent parameters extracted from EEMS data can be used as quick surrogate parameters to monitor TTHMFP for a diverse group of raw and MIEX-treated waters.


Asunto(s)
Resinas de Intercambio Iónico/química , Trihalometanos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Intercambio Iónico , Compuestos Orgánicos , Espectrometría de Fluorescencia , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
2.
Water Res ; 172: 115460, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954344

RESUMEN

This study investigated the applicability of parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrices (EEM) spectra to assess the formation potentials (FP) of carbonaceous and nitrogenous disinfection byproducts (C-DBP and N-DBP) and the FP reduction by the magnetic ion exchange resins, MIEX® DOC and MIEX® GOLD. Two source waters of different nature - a surface water and a secondary treated wastewater effluent - were studied. The samples were analyzed for formation potentials of trihalomethanes (THM4), haloacetonitriles (HAN4), haloketones (HK2), and chloropicrin (CPN). A 4-component PARAFAC model was developed from 150 EEM samples generated from the raw source waters and their treatment with MIEX® resins. Components C1, C2, and C3 corresponded to humic-like dissolved organic matter (DOM) while C4 corresponded to protein-like DOM. Both MIEX® resins preferentially removed components C1, C2, and C3 over C4, indicating affinity with humic materials. MIEX® resins were shown to be more effective to treat surface water than secondary effluent, including effective removal of DBP precursors with extended bed volume treatment. Among all parameters investigated, THM4-FP strongly correlated with humic-like component C3, while HAN4-FP strongly correlated with protein-like component C4 (ρ > 0.89 and p < 0.01); CPN-FP and HK2-FP both correlated with anthropogenic DOM C2 (ρ > 0.89 and p < 0.01). Our results indicate that EEM-PARAFAC was valuable for assessing DBP formation potentials and removal of their precursors by MIEX® resins in different water sources.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Análisis Factorial , Sustancias Húmicas , Nitrógeno , Espectrometría de Fluorescencia
3.
ACS Appl Mater Interfaces ; 10(46): 39745-39756, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30358988

RESUMEN

Ion-exchange membrane (IEM) performance in electrochemical processes such as fuel cells, redox flow batteries, or reverse electrodialysis (RED) is typically quantified through membrane selectivity and conductivity, which together determine the energy efficiency. However, water and co-ion transport (i.e., osmosis and salt diffusion/fuel crossover) also impact energy efficiency by allowing uncontrolled mixing of the electrolyte solutions to occur. For example, in RED with hypersaline water sources, uncontrolled mixing consumes 20-50% of the available mixing energy. Thus, in addition to high selectivity and high conductivity, it is desirable for IEMs to have low permeability to water and salt to minimize energy losses. Unfortunately, there is very little quantitative water and salt permeability information available for commercial IEMs, making it difficult to select the best membrane for a particular application. Accordingly, we measured the water and salt transport properties of 20 commercial IEMs and analyzed the relationships between permeability, diffusion, and partitioning according to the solution-diffusion model. We found that water and salt permeance vary over several orders of magnitude among commercial IEMs, making some membranes better suited than others to electrochemical processes that involve high salt concentrations and/or concentration gradients. Water and salt diffusion coefficients were found to be the principal factors contributing to the differences in permeance among commercial IEMs. We also observed that water and salt permeability were highly correlated to one another for all IEMs studied, regardless of polymer type or reinforcement. This finding suggests that transport of mobile salt in IEMs is governed by the microstructure of the membrane and provides clear evidence that mobile salt does not interact strongly with polymer chains in highly swollen IEMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA