Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 204(5): 1085-1090, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969387

RESUMEN

Lymphotoxin ß receptor (LTßR) signaling is crucial for lymphoid tissue organogenesis and immune homeostasis. To identify novel regulatory mechanisms for signaling, we implemented a two-step screen that uses coexpression analysis of human fibroblasts undergoing LTßR stimulation and affinity-purification mass spectrometry for the LTßR signaling protein TNFR-associated factor 3 (TRAF3). We identify Ewing sarcoma (EWS) protein as a novel LTßR signaling component that associates with TRAF3 but not with TNFR-associated factor 2 (TRAF2). The EWS:TRAF3 complex forms under unligated conditions that are disrupted following activation of the LTßR. We conclude that EWS limits expression of proinflammatory molecules, GM-CSF, and ERK-2, promoting immune homeostasis.


Asunto(s)
Receptor beta de Linfotoxina/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Complejos Multiproteicos/inmunología , Proteína EWS de Unión a ARN/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Células HEK293 , Humanos , Receptor beta de Linfotoxina/genética , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Complejos Multiproteicos/genética , Proteína EWS de Unión a ARN/genética , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/inmunología
2.
Exp Cell Res ; 409(2): 112930, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800542

RESUMEN

Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Apoptosis , Biomarcadores de Tumor/genética , Proteínas Portadoras/genética , Adhesión Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Uniones Intercelulares , Transducción de Señal , Uniones Estrechas , Células Tumorales Cultivadas
3.
Cell Mol Neurobiol ; 41(4): 619-649, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32468442

RESUMEN

The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Terapia Molecular Dirigida , Transducción de Señal , Animales , Trastorno del Espectro Autista/epidemiología , Supervivencia Celular , Citocinas/metabolismo , Humanos , Redes y Vías Metabólicas
4.
Clin Sci (Lond) ; 134(16): 2137-2160, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32820801

RESUMEN

The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other ß-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Sistema Nervioso/virología , Neumonía Viral/virología , Transducción de Señal/fisiología , COVID-19 , China , Infecciones por Coronavirus/transmisión , Humanos , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2
5.
Genes Dev ; 26(10): 1041-54, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22588718

RESUMEN

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²âº mediated by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP3R-dependent manner. By reducing steady-state levels of ER Ca²âº via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1's ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²âº signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/inmunología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus/inmunología , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
BMC Genomics ; 20(1): 152, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30791886

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. RESULTS: We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. CONCLUSIONS: Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype.


Asunto(s)
Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/genética , Proteoma , Proteómica , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proliferación Celular , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Transcriptoma , Neoplasias de la Mama Triple Negativas/patología
7.
Cell Mol Neurobiol ; 39(1): 31-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30446950

RESUMEN

The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.


Asunto(s)
Dopamina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dopamina/biosíntesis , Humanos , Modelos Biológicos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia
8.
Mol Cell ; 41(1): 107-16, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21185211

RESUMEN

ARTS (apoptosis-related protein in the TGF-ß signaling pathway) is a mitochondrial protein that binds XIAP (X-linked inhibitor of apoptosis protein) upon entering the cytosol, thus promoting cell death. Expression of ARTS is lost in some malignancies. Here, we show that ARTS binds to XIAP at BIR1, a domain distinct from the caspase-binding sites. Furthermore, ARTS interacts with the E3 ligase Siah-1 (seven in absentia homolog 1) to induce ubiquitination and degradation of XIAP. Cells lacking either Siah or ARTS contain higher steady-state levels of XIAP. Thus, ARTS serves as an adaptor to bridge Siah-1 to XIAP, targeting it for destruction.


Asunto(s)
Proteínas Nucleares/fisiología , Septinas/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Apoptosis , Sitios de Unión , Línea Celular , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Septinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Nature ; 474(7349): 96-9, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21552281

RESUMEN

Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/inmunología , Células Epiteliales/inmunología , Inmunidad Innata/genética , Inflamación/genética , Mucosa Intestinal/inmunología , Animales , Apoptosis/inmunología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Colitis/genética , Colitis/inmunología , Células HEK293 , Células HT29 , Humanos , Quinasa I-kappa B/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Interferencia de ARN , Transducción de Señal/genética , Transducción de Señal/inmunología
10.
Dev Biol ; 395(1): 96-110, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25176043

RESUMEN

To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.


Asunto(s)
Anexina A4/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anexina A4/genética , Apoptosis/genética , Secuencia de Bases , Caspasa 3/metabolismo , Supervivencia Celular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Hígado/citología , Hígado/embriología , Microscopía Confocal , Datos de Secuencia Molecular , Páncreas/citología , Páncreas/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
Cancer Cell ; 10(3): 215-26, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16959613

RESUMEN

The TSC1-TSC2 complex has recently been implicated in cell survival responses. We observed that NF-kappaB signaling is attenuated in TSC1- and TSC2-deficient MEFs concomitant with reduced survival following DNA damage or TNFalpha stimulation. Reconstitution of TSC2 expression in TSC2(-/-) MEFs rescued survival in an NF-kappaB activity-dependent manner. Furthermore, in TSC2(-/-) MEFs, the rapamycin-mediated inhibition of deregulated mTOR activity restored NF-kappaB activation and survival. This rapamycin-mediated effect was reversed by inhibition of NF-kappaB transcriptional activation or by inhibition of ERK1/2 MAP kinase or PI-3K pathways, which lie on signaling cascades that lead to NF-kappaB activation. These results provide evidence for a crosstalk between the TSC/Rheb/mTOR pathway and the NF-kappaB induction pathways and indicate that NF-kappaB functions as an important survival factor that regulates TSC2-dependent cell survival.


Asunto(s)
FN-kappa B/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Fibroblastos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transcripción Genética/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
12.
Beilstein J Org Chem ; 9: 900-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23766805

RESUMEN

Activation of nuclear factor-kappa B (NF-κB) and related upstream signal transduction pathways have long been associated with the pathogenesis of a variety of inflammatory diseases and has recently been implicated in the onset of cancer. This report provides a synthetic and compound-based property summary of five pathway-related small-molecule chemical probes identified and optimized within the National Institutes of Health-Molecular Libraries Probe Center Network (NIH-MLPCN) initiative. The chemical probes discussed herein represent first-in-class, non-kinase-based modulators of the NF-κB signaling pathway, which were identified and optimized through either cellular phenotypic or specific protein-target-based screening strategies. Accordingly, the resulting new chemical probes may allow for better fundamental understanding of this highly complex biochemical signaling network and could advance future therapeutic translation toward the clinical setting.

13.
Nat Cell Biol ; 7(9): 921-3, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16136188

RESUMEN

The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.


Asunto(s)
Proteínas I-kappa B/metabolismo , FN-kappa B/metabolismo , Animales , Células Cultivadas , Citoplasma/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/fisiología , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Genes Reguladores/fisiología , Ratones , Inhibidor NF-kappaB alfa , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA
14.
Proc Natl Acad Sci U S A ; 106(34): 14524-9, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19667203

RESUMEN

NOD1 and NOD2 are members of the NOD-like receptor (NLR) protein family that are involved in sensing the presence of pathogens and are a component of the innate immune system. Upon activation by specific bacterial peptides derived from peptidoglycans, NODs interact via a CARD-CARD interaction with the receptor-interacting protein kinase RIP2, an inducer of NF-kappaB activation. In this report, we show that NOD signaling is dependent on XIAP, a member of the inhibitor of apoptosis protein (IAP) family. Cells deficient in XIAP exhibit a marked reduction in NF-kappaB activation induced by microbial NOD ligands and by over-expression of NOD1 or NOD2. Moreover, we show that XIAP interacts with RIP2 via its BIR2 domain, which could be disrupted by XIAP antagonists SMAC and SMAC-mimicking compounds. Both NOD1 and NOD2 associated with XIAP in a RIP2-dependent manner, providing evidence that XIAP associates with the NOD signalosome. Taken together, our data suggest a role for XIAP in regulating innate immune responses by interacting with NOD1 and NOD2 through interaction with RIP2.


Asunto(s)
Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Humanos , Immunoblotting , Inmunoprecipitación , Interleucina-8/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/genética , Unión Proteica , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Proteína Inhibidora de la Apoptosis Ligada a X/genética
15.
Cancer Res ; 67(9): 4219-26, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17483333

RESUMEN

The epithelium-specific Ets transcription factor, PDEF, plays a role in prostate and breast cancer, although its precise function has not been established. In prostate cancer, PDEF is involved in regulating prostate-specific antigen expression via interaction with the androgen receptor and NKX3.1, and down-regulation of PDEF by antiproliferative agents has been associated with reduced PDEF expression. We now report that reduced expression of PDEF leads to a morphologic change, increased migration and invasiveness in prostate cancer cells, reminiscent of transforming growth factor beta (TGFbeta) function and epithelial-to-mesenchymal transition. Indeed, inhibition of PDEF expression triggers a transcriptional program of genes involved in the TGFbeta pathway, migration, invasion, adhesion, and epithelial dedifferentiation. Our results establish PDEF as a critical regulator of genes involved in cell motility, invasion, and adhesion of prostate cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-ets/biosíntesis , Adhesión Celular/genética , Línea Celular Tumoral , Células Epiteliales/patología , Humanos , Integrinas/genética , Integrinas/metabolismo , Masculino , Mesodermo/patología , Invasividad Neoplásica , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-ets/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ets/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Activación Transcripcional , Transfección , Factor de Crecimiento Transformador beta/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Biosci Rep ; 39(4)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30837326

RESUMEN

Innate immunity comprises several inflammation-related modulatory pathways which receive signals from an array of membrane-bound and cytoplasmic pattern recognition receptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain containing proteins) relate to a large family of cytosolic innate receptors, involved in detection of intracellular pathogens and endogenous byproducts of tissue injury. These receptors may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs), activating host responses against pathogen infection and cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries, which may either initiate the formation of inflammasomes and/or activate nuclear factor κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and autophagy. Disruption of those signals may lead to a number of pro-inflammatory conditions, eventually promoting the onset of human malignancies. In this review, we describe the structures and functions of the most well-defined NLR proteins and highlight their association and biological impact on a diverse number of cancers.


Asunto(s)
Inmunidad Innata , Proteínas NLR/inmunología , Neoplasias/inmunología , Animales , Humanos , Inflamasomas/inmunología , Inflamación/inmunología , FN-kappa B/inmunología , Neoplasias/patología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Receptores de Reconocimiento de Patrones/inmunología
17.
Front Immunol ; 10: 2903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921164

RESUMEN

Genome-wide co-expression analysis is often used for annotating novel gene functions from high-dimensional data. Here, we developed an R package with a Shiny visualization app that creates immuno-networks from RNAseq data using a combination of Weighted Gene Co-expression Network Analysis (WGCNA), xCell immune cell signatures, and Bayesian Network Learning. Using a large publicly available RNAseq dataset we generated a Gene Module-Immune Cell (GMIC) network that predicted causal relationships between DEAH-box RNA helicase (DHX)15 and genes associated with humoral immunity, suggesting that DHX15 may regulate B cell fate. Deletion of DHX15 in mouse B cells led to impaired lymphocyte development, reduced peripheral B cell numbers, and dysregulated expression of genes linked to antibody-mediated immune responses similar to the genes predicted by the GMIC network. Moreover, antigen immunization of mice demonstrated that optimal primary IgG1 responses required DHX15. Intrinsic expression of DHX15 was necessary for proliferation and survival of activated of B cells. Altogether, these results support the use of co-expression networks to elucidate fundamental biological processes.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Inmunomodulación , ARN Helicasas/genética , Animales , Biopsia , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunomodulación/genética , Ratones , ARN Helicasas/metabolismo
18.
Oncogenesis ; 8(3): 14, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783079

RESUMEN

Axl expression is deregulated in several cancer types, predicts poor overall patient survival and is linked to resistance to drug therapy. Here, we evaluated a library of natural compounds for inhibitors of Axl and identified dihydroartemisinin, the active principle of the anti-malarial drug artemisinin, as an Axl-inhibitor in prostate cancer. Dihydroartemisinin blocks Axl expression leading to apoptosis, decrease in cell proliferation, migration, and tumor development of prostate cancer cells. Dihydroartemisinin treatment synergizes with docetaxel, a standard of care in metastatic prostate cancer increasing overall survival of mice with human xenografts. Dihydroartemisinin control of miR-34a and miR-7 expression leads to inhibition of Axl expression in a process at least partially dependent on regulation of chromatin via methylation of histone H3 lysine 27 residues by Jumonji, AT-rich interaction domain containing 2 (JARID2), and the enhancer of zeste homolog 2. Our discovery of a previously unidentified miR-34a/miR-7/JARID2 pathway controlling dihydroartemisinin effects on Axl expression and inhibition of cancer cell proliferation, migration, invasion, and tumor formation provides new molecular mechanistic insights into dihydroartemisinin anticancer effect on prostate cancer with potential therapeutic implications.

19.
Cancer Res ; 79(12): 3100-3111, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31040156

RESUMEN

Cnk1 (connector enhancer of kinase suppressor of Ras 1) is a pleckstrin homology (PH) domain-containing scaffold protein that increases the efficiency of Ras signaling pathways, imparting efficiency and specificity to the response of cell proliferation, survival, and migration. Mutated KRAS (mut-KRAS) is the most common proto-oncogenic event, occurring in approximately 25% of human cancers and has no effective treatment. In this study, we show that selective inhibition of Cnk1 blocks growth and Raf/Mek/Erk, Rho and RalA/B signaling in mut-KRAS lung and colon cancer cells with little effect on wild-type (wt)-KRAS cells. Cnk1 inhibition decreased anchorage-independent mut-KRas cell growth more so than growth on plastic, without the partial "addiction" to mut-KRAS seen on plastic. The PH domain of Cnk1 bound with greater affinity to PtdIns(4,5)P2 than PtdIns(3,4,5)P3, and Cnk1 localized to areas of the plasma membranes rich in PtdIns, suggesting a role for the PH domain in the biological activity of Cnk1. Through molecular modeling and structural modification, we identified a compound PHT-7.3 that bound selectively to the PH domain of Cnk1, preventing plasma membrane colocalization with mut-KRas. PHT-7.3 inhibited mut-KRas, but not wild-type KRas cancer cell and tumor growth and signaling. Thus, the PH domain of Cnk1 is a druggable target whose inhibition selectively blocks mutant KRas activation, making Cnk1 an attractive therapeutic target in patients with mut-KRAS-driven cancer. SIGNIFICANCE: These findings identify a therapeutic strategy to selectively block oncogenic KRas activity through the PH domain of Cnk1, which reduces its cell membrane binding, decreasing the efficiency of Ras signaling and tumor growth.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Dominios Homólogos a Pleckstrina , Células Tumorales Cultivadas
20.
Curr Biol ; 15(14): 1291-5, 2005 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16051172

RESUMEN

The IkappaB kinase (IKK) activity is critical for processing IkappaB inhibitory proteins and activating the NF-kappaB signaling, which is involved in a series of physiological and developmental steps in vertebrates. The IKK activity resides in two catalytic subunits, IKK1 and IKK2, and two regulatory subunits, NEMO and ELKS. IKK2 is the major cytokine-responsive IkappaB kinase because depletion of IKK1 does not interfere with the IKK activity. In fact, IKK1-/- mice display morphological abnormalities that are independent of its kinase activity and NF-kappaB activation. Hence, using zebrafish (Danio rerio) as a model, we examined the evolutionary role of IKK1 in modulating NF-kappaB. Ikk1-/- zebrafish embryos present head and tail malformations and, surprisingly, show upregulation of NF-kappaB-responsive genes and increased NF-kappaB-dependent apoptosis. Overexpression of ikk1 leads to midline structure defects that resemble NF-kappaB blockage in vivo. Zebrafish Ikk1 forms complexes with NEMO that represses NF-kappaB in vertebrate cells. Indeed, truncation of its NEMO binding domain (NBD) restores NF-kappaB-dependent transcriptional activity and, consequently, the ikk1-overexpressing phenotype. Here, we report that Ikk1 negatively regulates NF-kappaB by sequestering NEMO from active IKK complexes, indicating that IKK1 can function as a repressor of NF-kappaB.


Asunto(s)
Regulación hacia Abajo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Pez Cebra/metabolismo , Animales , Western Blotting , Línea Celular , Mapeo Cromosómico , Clonación Molecular , Biología Computacional , Cartilla de ADN , Componentes del Gen , Humanos , Quinasa I-kappa B , Inmunohistoquímica , Hibridación in Situ , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA