Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916773

RESUMEN

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Asunto(s)
Forminas , Mitosis , Podocitos , Transcriptoma , Humanos , Mitosis/genética , Podocitos/metabolismo , Podocitos/patología , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Muerte Celular/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Mutación , Núcleo Celular/metabolismo , Núcleo Celular/genética , Línea Celular
2.
Cell Mol Life Sci ; 79(5): 236, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35399121

RESUMEN

Proteolipids are proteins with unusual lipid-like properties. It has long been established that PLP and plasmolipin, which are two unrelated membrane-tetra-spanning myelin proteolipids, can be converted in vitro into a water-soluble form with a distinct conformation, raising the question of whether these, or other similar proteolipids, can adopt two different conformations in the cell to adapt their structure to distinct environments. Here, we show that MALL, another proteolipid with a membrane-tetra-spanning structure, distributes in membranes outside the nucleus and, within the nucleus, in membrane-less, liquid-like PML body biomolecular condensates. Detection of MALL in one or other environment was strictly dependent on the method of cell fixation used, suggesting that MALL adopts different conformations depending on its physical environment -lipidic or aqueous- in the cell. The acquisition of the condensate-compatible conformation requires PML expression. Excess MALL perturbed the distribution of the inner nuclear membrane proteins emerin and LAP2ß, and that of the DNA-binding protein BAF, leading to the formation of aberrant nuclei. This effect, which is consistent with studies identifying overexpressed MALL as an unfavorable prognostic factor in cancer, could contribute to cell malignancy. Our study establishes a link between proteolipids, membranes and biomolecular condensates, with potential biomedical implications.


Asunto(s)
Condensados Biomoleculares , Neoplasias , Núcleo Celular , Humanos , Conformación Molecular , Proteolípidos/química
3.
Cell Mol Life Sci ; 79(1): 61, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-34999972

RESUMEN

Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.


Asunto(s)
Adhesión Celular/fisiología , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Linfocitos T/metabolismo , Línea Celular Tumoral , Células Hep G2 , Humanos , Hígado/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Transcitosis/fisiología
4.
Cell Mol Life Sci ; 79(11): 571, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306014

RESUMEN

In INF2-a formin linked to inherited renal and neurological disease in humans-the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Humanos , Forminas , Actinas/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Unión Proteica
5.
Cell Mol Life Sci ; 77(11): 2125-2140, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31396656

RESUMEN

VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Antígenos CD/genética , Cadherinas/genética , Permeabilidad Capilar , Células Endoteliales/citología , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Proteolisis , Proteína Proto-Oncogénica c-ets-1/genética , Regulación hacia Arriba
6.
J Cell Sci ; 128(12): 2261-70, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25967552

RESUMEN

The base of the primary cilium contains a zone of condensed membranes whose importance is not known. Here, we have studied the involvement of MAL, a tetraspanning protein that exclusively partitions into condensed membrane fractions, in the condensation of membranes at the ciliary base and investigated the importance of these membranes in primary cilium formation. We show that MAL accumulates at the ciliary base of epithelial MDCK cells. Knockdown of MAL expression resulted in a drastic reduction in the condensation of membranes at the ciliary base, the percentage of ciliated cells and the length of the cilia, but did not affect the docking of the centrosome to the plasma membrane or produce missorting of proteins to the pericentriolar zone or to the membrane of the remaining cilia. Rab8 (for which there are two isoforms, Rab8A and Rab8b), IFT88 and IFT20, which are important components of the machinery of ciliary growth, were recruited normally to the ciliary base of MAL-knockdown cells but were unable to elongate the primary cilium correctly. MAL, therefore, is crucial for the proper condensation of membranes at the ciliary base, which is required for efficient primary cilium extension.


Asunto(s)
Membrana Celular/fisiología , Centrosoma/fisiología , Cilios/fisiología , Cilios/ultraestructura , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Animales , Western Blotting , Células Cultivadas , Perros , Técnica del Anticuerpo Fluorescente , Humanos , Células de Riñón Canino Madin Darby , Microscopía Electrónica , Morfogénesis , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/antagonistas & inhibidores , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
7.
RNA Biol ; 14(2): 236-244, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27981895

RESUMEN

Alternative polyadenylation (APA) is a step in mRNA 3'-end processing that contributes to the complexity of the transcriptome by generating isoforms that differ in either their coding sequence or their 3'-untranslated regions (UTRs). The EPB41 genes, EPB41, EPB41L2, EPB41L3 and EPB41L1, encode an impressively complex array of structural adaptor proteins (designated 4.1R, 4.1G, 4.1B and 4.1N, respectively) by using alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing. The great variety of 4.1 proteins mainly results from 5'-end and internal processing of the EPB41 pre-mRNAs. Thus, 4.1 proteins can vary in their N-terminal extensions but all contain a highly homologous C-terminal domain (CTD). Here we study a new group of EPB41-related mRNAs that originate by APA and lack the exons encoding the CTD characteristic of prototypical 4.1 proteins, thereby encoding a new type of 4.1 protein. For the EPB41 gene, this type of processing was observed in all 11 human tissues analyzed. Comparative genomic analysis of EPB41 indicates that APA is conserved in various mammals. In addition, we show that APA also functions for the EPB41L2, EPB41L3 and EPB41L1 genes, but in a more restricted manner in the case of the latter 2 than it does for the EPB41 and EPB41L2 genes. Our study shows alternative polyadenylation to be an additional mechanism for the generation of 4.1 protein diversity in the already complex EPB41-related genes. Understanding the diversity of EPB41 RNA processing is essential for a full appreciation of the many 4.1 proteins expressed in normal and pathological tissues.


Asunto(s)
Empalme Alternativo , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Poliadenilación , Regiones no Traducidas 3' , Secuencia de Bases , Encéfalo/metabolismo , ADN Complementario , Exones , Humanos , Intrones , Neuropéptidos , Especificidad de Órganos/genética , ARN Mensajero/genética , Transcripción Genética
8.
J Cell Sci ; 126(Pt 20): 4589-601, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23943871

RESUMEN

The microtubule (MT) cytoskeleton is essential for many cellular processes, including cell polarity and migration. Cortical platforms, formed by a subset of MT plus-end-tracking proteins, such as CLASP2, and non-MT binding proteins such as LL5ß, attach distal ends of MTs to the cell cortex. However, the mechanisms involved in organizing these platforms have not yet been described in detail. Here we show that 4.1R, a FERM-domain-containing protein, interacts and colocalizes with cortical CLASP2 and is required for the correct number and dynamics of CLASP2 cortical platforms. Protein 4.1R also controls binding of CLASP2 to MTs at the cell edge by locally altering GSK3 activity. Furthermore, in 4.1R-knockdown cells MT plus-ends were maintained for longer in the vicinity of cell edges, but instead of being tethered to the cell cortex, MTs continued to grow, bending at cell margins and losing their radial distribution. Our results suggest a previously unidentified role for the scaffolding protein 4.1R in locally controlling CLASP2 behavior, CLASP2 cortical platform turnover and GSK3 activity, enabling correct MT organization and dynamics essential for cell polarity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Estructura Terciaria de Proteína
9.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597186

RESUMEN

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Asunto(s)
Actomiosina , Molécula 1 de Adhesión Intercelular , Animales , Ratones , Humanos , Actomiosina/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Citoesqueleto de Actina/metabolismo , Leucocitos/metabolismo , Polaridad Celular
10.
J Cell Sci ; 124(Pt 15): 2529-38, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21750196

RESUMEN

In red blood cells, multifunctional protein 4.1R stabilizes the spectrin-actin network and anchors it to the plasma membrane. To contribute to the characterization of functional roles of 4.1R in nonerythroid cells, we have analyzed the participation of protein 4.1R in cell migration. The distribution of endogenous 4.1R is polarized towards the leading edge of migrating cells. Exogenous 4.1R isoforms containing a complete membrane-binding domain consistently localized to plasma membrane extensions enriched in F-actin. Silencing of 4.1R caused the loss of persistence of migration in subconfluent cells and of directional migration in cells moving into a wound. Coimmunoprecipitation and pull-down assays identified the scaffold protein IQGAP1 as a partner for protein 4.1R and showed that the 4.1R membrane-binding domain is involved in binding IQGAP1. Importantly, we show that protein 4.1R is necessary for the localization of IQGAP1 to the leading edge of cells migrating into a wound, whereas IQGAP1 is not required for protein 4.1R localization. Collectively, our results indicate a crucial role for protein 4.1R in cell migration and in the recruitment of the scaffold protein IQGAP1 to the cell front.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Western Blotting , Células COS , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Chlorocebus aethiops , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Interferencia de ARN , Proteínas Activadoras de ras GTPasa/genética
11.
Arterioscler Thromb Vasc Biol ; 32(8): e90-102, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723439

RESUMEN

OBJECTIVE: Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. METHODS AND RESULTS: In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins ß-catenin and p120-catenin. ß-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased ß-catenin phosphorylation, without altering the actomyosin cytoskeleton. CONCLUSIONS: We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.


Asunto(s)
Uniones Adherentes/fisiología , Células Endoteliales/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/fisiología , Amidas/farmacología , Células Cultivadas , Quinasa 2 de Adhesión Focal/fisiología , Humanos , Permeabilidad , Fosforilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Piridinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , beta Catenina/metabolismo
12.
Cancers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37345137

RESUMEN

The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.

13.
BMC Biol ; 8: 11, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20122254

RESUMEN

BACKGROUND: Endothelial cell-cell junctions maintain endothelial integrity and regulate vascular morphogenesis and homeostasis. Cell-cell junctions are usually depicted with a linear morphology along the boundaries between adjacent cells and in contact with cortical F-actin. However, in the endothelium, cell-cell junctions are highly dynamic and morphologically heterogeneous. RESULTS: We report that endothelial cell-cell junctions can attach to the ends of stress fibres instead of to cortical F-actin, forming structures that we name discontinuous adherens junctions (AJ). Discontinuous AJ are highly dynamic and are increased in response to tumour necrosis factor (TNF)-alpha, correlating with the appearance of stress fibres. We show that vascular endothelial (VE)-cadherin/beta-catenin/alpha-catenin complexes in discontinuous AJ are linked to stress fibres. Moreover, discontinuous AJ connect stress fibres from adjacent cells independently of focal adhesions, of which there are very few in confluent endothelial cells, even in TNF-alpha-stimulated cells. RNAi-mediated knockdown of VE-cadherin, but not zonula occludens-1, reduces the linkage of stress fibres to cell-cell junctions, increases focal adhesions, and dramatically alters the distribution of these actin cables in confluent endothelial cells. CONCLUSIONS: Our results indicate that stress fibres from neighbouring cells are physically connected through discontinuous AJ, and that stress fibres can be stabilized by AJ-associated multi-protein complexes distinct from focal adhesions.


Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Fibras de Estrés/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/ultraestructura , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/ultraestructura , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Interferente Pequeño , Fibras de Estrés/ultraestructura , Factor de Necrosis Tumoral alfa/farmacología , Proteína de la Zonula Occludens-1
14.
Cells ; 10(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946345

RESUMEN

The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Neoplasias/metabolismo , Animales , Células Epiteliales/metabolismo , Humanos , Linfocitos/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/química , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Células de Schwann/metabolismo
15.
BMC Biochem ; 11: 7, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20109190

RESUMEN

BACKGROUND: Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. RESULTS: We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues) involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. CONCLUSIONS: These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.


Asunto(s)
Antígenos Nucleares/química , Proteínas del Citoesqueleto/química , Proteínas de la Membrana/química , Proteínas Asociadas a Matriz Nuclear/química , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas
16.
Front Cell Dev Biol ; 8: 622918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585461

RESUMEN

Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the "alternative" route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.

17.
iScience ; 23(6): 101244, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32629610

RESUMEN

The inheritance of the midbody remnant (MBR) breaks the symmetry of the two daughter cells, with functional consequences for lumen and primary cilium formation by polarized epithelial cells, and also for development and differentiation. However, despite its importance, neither the relationship between the plasma membrane and the inherited MBR nor the mechanism of MBR inheritance is well known. Here, the analysis by correlative light and ultra-high-resolution scanning electron microscopy reveals a membranous stalk that physically connects the MBR to the apical membrane of epithelial cells. The stalk, which derives from the uncleaved side of the midbody, concentrates the ESCRT machinery. The ESCRT CHMP4C subunit enables MBR inheritance, and its depletion dramatically reduces the percentage of ciliated cells. We demonstrate (1) that MBRs are physically connected to the plasma membrane, (2) how CHMP4C helps maintain the integrity of the connection, and (3) the functional importance of the connection.

18.
J Cell Biol ; 159(1): 37-44, 2002 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-12370246

RESUMEN

Transcytosis is used alone (e.g., hepatoma HepG2 cells) or in combination with a direct pathway from the Golgi (e.g., epithelial MDCK cells) as an indirect route for targeting proteins to the apical surface. The raft-associated MAL protein is an essential element of the machinery for the direct route in MDCK cells. Herein, we present the functional characterization of MAL2, a member of the MAL protein family, in polarized HepG2 cells. MAL2 resided selectively in rafts and is predominantly distributed in a compartment localized beneath the subapical F-actin cytoskeleton. MAL2 greatly colocalized in subapical endosome structures with transcytosing molecules en route to the apical surface. Depletion of endogenous MAL2 drastically blocked transcytotic transport of exogenous polymeric immunoglobulin receptor and endogenous glycosylphosphatidylinositol-anchored protein CD59 to the apical membrane. MAL2 depletion did not affect the internalization of these molecules but produced their accumulation in perinuclear endosome elements that were accessible to transferrin. Normal transcytosis persisted in cells that expressed exogenous MAL2 designed to resist the depletion treatment. MAL2 is therefore essential for transcytosis in HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Hepáticas/metabolismo , Microdominios de Membrana/química , Transporte de Proteínas/fisiología , Proteolípidos/metabolismo , Proteínas de Transporte Vesicular , Actinas/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Antígenos CD59/metabolismo , Proteínas Portadoras/genética , Polaridad Celular , Humanos , Inmunoglobulina A/metabolismo , Hígado/citología , Microdominios de Membrana/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito , Proteolípidos/genética , Receptores Fc/metabolismo , Células Tumorales Cultivadas
19.
BMC Biol ; 6: 51, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19055807

RESUMEN

BACKGROUND: In red blood cells, protein 4.1 (4.1R) is an 80 kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane through its FERM domain. While the expression pattern of 4.1R in mature red cells is relatively simple, a rather complex array of 4.1R protein isoforms varying in N-terminal extensions, internal sequences and subcellular locations has been identified in nucleated cells. Among these, 135 kDa and 80 kDa isoforms have different N-terminal extensions and are expressed either from AUG1- or AUG2-containing mRNAs, respectively. These two types of mRNAs, varying solely by presence/absence of 17 nucleotides (nt) which contain the AUG1 codon, are produced by alternative splicing of the 4.1R pre-mRNA. It is unknown whether the 699 nt region comprised between AUG1 and AUG2, kept as a 5' untranslated region in AUG2-containing mRNAs, plays a role on 4.1R mRNA translation. RESULTS: By analyzing the in vitro expression of a panel of naturally occurring 4.1R cDNAs, we observed that all AUG1/AUG2-containing cDNAs gave rise to both long, 135 kDa, and short, 80 kDa, 4.1R isoforms. More importantly, similar results were also observed in cells transfected with this set of 4.1R cDNAs. Mutational studies indicated that the short isoforms were not proteolytic products of the long isoforms but products synthesized from AUG2. The presence of a cryptic promoter in the 4.1R cDNA sequence was also discounted. When a 583 nt sequence comprised between AUG1 and AUG2 was introduced into bicistronic vectors it directed protein expression from the second cistron. This was also the case when ribosome scanning was abolished by introduction of a stable hairpin at the 5' region of the first cistron. Deletion analysis of the 583 nt sequence indicated that nucleotides 170 to 368 are essential for expression of the second cistron. The polypyrimidine tract-binding protein bound to the 583 nt active sequence but not to an inactive 3'-fragment of 149 nucleotides. CONCLUSION: Our study is the first demonstration of an internal ribosome entry site as a mechanism ensuring the production of 80 kDa isoforms of protein 4.1R. This mechanism might also account for the generation of 60 kDa isoforms of 4.1R from a downstream AUG3. Our results reveal an additional level of control to 4.1R gene expression pathways and will contribute to the understanding of the biology of proteins 4.1R and their homologues, comprising an ample family of proteins involved in cytoskeletal organization.


Asunto(s)
Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Biosíntesis de Proteínas/genética , Región de Flanqueo 5' , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Genes/genética , Genes Reporteros/genética , Vectores Genéticos , Proteína de Unión al Tracto de Polipirimidina/genética , Isoformas de Proteínas
20.
Sci Rep ; 9(1): 1116, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718762

RESUMEN

The primary cilium is a single non-motile protrusion of the plasma membrane of most types of mammalian cell. The structure, length and function of the primary cilium must be tightly controlled because their dysfunction is associated with disease. Caveolin 1 (Cav1), which is best known as a component of membrane invaginations called caveolae, is also present in non-caveolar membrane domains whose function is beginning to be understood. We show that silencing of α and ß Cav1 isoforms in different cell lines increases ciliary length regardless of the route of primary ciliogenesis. The sole expression of Cav1α, which is distributed at the apical membrane, restores normal cilium size in Cav1 KO MDCK cells. Cells KO for only Cav1α, which also show long cilia, have a disrupted actin cytoskeleton and reduced RhoA GTPase activity at the apical membrane, and a greater accumulation of Rab11 vesicles at the centrosome. Subsequent experiments showed that DIA1 and ROCK help regulate ciliary length. Since MDCK cells lack apical caveolae, our results imply that non-caveolar apical Cav1α is an important regulator of ciliary length, exerting its effect via RhoA and its effectors, ROCK and DIA1.


Asunto(s)
Caveolina 1/genética , Caveolina 1/metabolismo , Cilios/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Centrosoma/metabolismo , Perros , Forminas/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Humanos , Células de Riñón Canino Madin Darby , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA