Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 563(7729): 121-125, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333624

RESUMEN

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Asunto(s)
Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , ADN Protozoario/metabolismo , Genoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , ADN Protozoario/genética , Haplotipos/genética , Histonas/deficiencia , Histonas/genética , Familia de Multigenes/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
Nucleic Acids Res ; 46(18): e106, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29912461

RESUMEN

Despite their importance for most DNA-templated processes, the function of individual histone modifications has remained largely unknown because in vivo mutational analyses are lacking. The reason for this is that histone genes are encoded by multigene families and that tools to simultaneously edit multiple genomic loci with high efficiency are only now becoming available. To overcome these challenges, we have taken advantage of the power of CRISPR-Cas9 for precise genome editing and of the fact that most DNA repair in the protozoan parasite Trypanosoma brucei occurs via homologous recombination. By establishing an episome-based CRISPR-Cas9 system for T. brucei, we have edited wild type cells without inserting selectable markers, inserted a GFP tag between an ORF and its 3'UTR, deleted both alleles of a gene in a single transfection, and performed precise editing of genes that exist in multicopy arrays, replacing histone H4K4 with H4R4 in the absence of detectable off-target effects. The newly established genome editing toolbox allows for the generation of precise mutants without needing to change other regions of the genome, opening up opportunities to study the role of individual histone modifications, catalytic sites of enzymes or the regulatory potential of UTRs in their endogenous environments.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Código de Histonas/genética , Histonas/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular , Genoma de Protozoos/genética , Proteínas Fluorescentes Verdes/genética , Mutagénesis Sitio-Dirigida/métodos , Organismos Modificados Genéticamente , Plásmidos/genética , Procesamiento Proteico-Postraduccional , ARN Guía de Kinetoplastida/genética , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
3.
J Food Prot ; 87(2): 100212, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38161054

RESUMEN

Growth of meat microbiota usually results in spoilage of meat that can be perceived by consumers due to sensory changes. However, a high bacterial load does not necessarily result in sensory deviation of meat; nevertheless, this meat is considered unfit for human consumption. Therefore, the aims of this study were to investigate changes in the microbiota from fresh to spoiled meat and whether the proportions of certain bacteria can probably be used to indicate the hygiene status of meat. For this purpose, 12 fresh pork samples were divided into two groups, and simultaneously aerobically stored at 4°C and 22°C. At each time-temperature point (fresh meat, days 6, 13, and 20 at 4°C, and days 1, 2, 3, and 6 at 22°C), 12 meat subsamples were investigated. Sequences obtained from next-generation sequencing (NGS) were further analyzed down to species level. Plate counting of six bacterial groups and NGS results showed that Pseudomonas spp. and lactic acid bacteria (LAB) were found in a high proportion in all stored meat samples and can therefore be considered as important "spoilage indicator bacteria". On the contrary, sequences belonging to Staphylococcus epidermidis were found in a relatively high proportion in almost all fresh meat samples but were less common in stored meat. In this context, they can be considered as "hygiene indicator bacteria" of meat. Based on these findings, the proportion of the "hygiene indicator bacteria" in relation to the "spoilage indicator bacteria" was calculated to determine a "hygiene index" of meat. This index has a moderate to strong correlation to bacterial loads obtained from culture (p < 0.05), specifically to Pseudomonas spp., LAB and total viable counts (TVCs). Knowledge of the proportions of hygiene and spoilage indicator bacteria obtained by NGS could help to determine the hygiene status even of (heat-) processed composite meat products for the first time, thus enhancing food quality assurance and consumer protection.


Asunto(s)
Microbiología de Alimentos , Microbiota , Humanos , ARN Ribosómico 16S/genética , Carne/microbiología , Bacterias , Pseudomonas
4.
BMC Genomics ; 13: 736, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23270511

RESUMEN

BACKGROUND: Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. RESULTS: Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. CONCLUSIONS: This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an essential resource for future studies on the development of new drugs and diagnostics, for Chagas Disease. These data is available through the TcSNP database (http://snps.tcruzi.org).


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Variación Genética/genética , Genoma de Protozoos/genética , Selección Genética , Trypanosoma cruzi/genética , Secuencia de Bases , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Especificidad de la Especie
5.
NAR Genom Bioinform ; 3(3): lqab082, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34541528

RESUMEN

To date, most reference genomes represent a mosaic consensus sequence in which the homologous chromosomes are collapsed into one sequence. This approach produces sequence artefacts and impedes analyses of allele-specific mechanisms. Here, we report an allele-specific genome assembly of the diploid parasite Trypanosoma brucei and reveal allelic variants affecting gene expression. Using long-read sequencing and chromosome conformation capture data, we could assign 99.5% of all heterozygote variants to a specific homologous chromosome and build a 66 Mb long allele-specific genome assembly. The phasing of haplotypes allowed us to resolve hundreds of artefacts present in the previous mosaic consensus assembly. In addition, it revealed allelic recombination events, visible as regions of low allelic heterozygosity, enabling the lineage tracing of T. brucei isolates. Interestingly, analyses of transcriptome and translatome data of genes with allele-specific premature termination codons point to the absence of a nonsense-mediated decay mechanism in trypanosomes. Taken together, this study delivers a reference quality allele-specific genome assembly of T. brucei and demonstrates the importance of such assemblies for the study of gene expression control. We expect the new genome assembly will increase the awareness of allele-specific phenomena and provide a platform to investigate them.

6.
Methods Mol Biol ; 1971: 109-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30980300

RESUMEN

Ribosomes are the machinery responsible for reading mRNAs and translating them into proteins. The ribosome profiling approach is based on high-throughput sequencing of ribosome-protected mRNAs. RNAs not harboring ribosomes are removed by nuclease digestion leaving the so-called ribosome "footprints." The purified "footprint" RNA molecules are processed into DNA libraries and their individual abundance is determined by deep sequencing. Ribosome profiling reveals the portion of transcripts which are actually protein-coding and can be used for differential gene expression analysis addressing rates of protein synthesis, and translational control and efficiency.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero/genética , ARN Protozoario/genética , Ribosomas/genética , Trypanosomatina/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Ribosomas/metabolismo , Trypanosomatina/metabolismo
7.
PLoS One ; 9(5): e96762, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24828104

RESUMEN

In Trypanosoma cruzi the isoprenoid and sterol biosynthesis pathways are validated targets for chemotherapeutic intervention. In this work we present a study of the genetic diversity observed in genes from these pathways. Using a number of bioinformatic strategies, we first identified genes that were missing and/or were truncated in the T. cruzi genome. Based on this analysis we obtained the complete sequence of the ortholog of the yeast ERG26 gene and identified a non-orthologous homolog of the yeast ERG25 gene (sterol methyl oxidase, SMO), and we propose that the orthologs of ERG25 have been lost in trypanosomes (but not in Leishmanias). Next, starting from a set of 16 T. cruzi strains representative of all extant evolutionary lineages, we amplified and sequenced ∼ 24 Kbp from 22 genes, identifying a total of 975 SNPs or fixed differences, of which 28% represent non-synonymous changes. We observed genes with a density of substitutions ranging from those close to the average (∼ 2.5/100 bp) to some showing a high number of changes (11.4/100 bp, for the putative lathosterol oxidase gene). All the genes of the pathway are under apparent purifying selection, but genes coding for the sterol C14-demethylase, the HMG-CoA synthase, and the HMG-CoA reductase have the lowest density of missense SNPs in the panel. Other genes (TcPMK, TcSMO-like) have a relatively high density of non-synonymous SNPs (2.5 and 1.9 every 100 bp, respectively). However, none of the non-synonymous changes identified affect a catalytic or ligand binding site residue. A comparative analysis of the corresponding genes from African trypanosomes and Leishmania shows similar levels of apparent selection for each gene. This information will be essential for future drug development studies focused on this pathway.


Asunto(s)
Genoma de Protozoos , Redes y Vías Metabólicas/genética , Proteínas Protozoarias/genética , Esteroles/biosíntesis , Terpenos/metabolismo , Trypanosoma cruzi/genética , 3-Hidroxiesteroide Deshidrogenasas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Leishmania/genética , Proteínas de la Membrana , Oxigenasas de Función Mixta/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Trypanosoma/genética
8.
PLoS Negl Trop Dis ; 6(7): e1777, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22860154

RESUMEN

BACKGROUND: Trypanosoma cruzi is the causative agent of Chagas' Disease. The parasite has a complex population structure, with six major evolutionary lineages, some of which have apparently resulted from ancestral hybridization events. Because there are important biological differences between these lineages, strain typing methods are essential to study the T. cruzi species. Currently, there are a number of typing methods available for T. cruzi, each with its own advantages and disadvantages. However, most of these methods are based on the amplification of a variable number of loci. METHODOLOGY/PRINCIPAL FINDINGS: We present a simple typing assay for T. cruzi, based on the amplification of a single polymorphic locus: the TcSC5D gene. When analyzing sequences from this gene (a putative lathosterol/episterol oxidase) we observed a number of interesting polymorphic sites, including 1 tetra-allelic, and a number of informative tri- and bi-allelic SNPs. Furthermore, some of these SNPs were located within the recognition sequences of two commercially available restriction enzymes. A double digestion with these enzymes generates a unique restriction pattern that allows a simple classification of strains in six major groups, corresponding to DTUs TcI-TcIV, the recently proposed Tcbat lineage, and TcV/TcVI (as a group). Direct sequencing of the amplicon allows the classification of strains into seven groups, including the six currently recognized evolutionary lineages, by analyzing only a few discriminant polymorphic sites. CONCLUSIONS/SIGNIFICANCE: Based on these findings we propose a simple typing assay for T. cruzi that requires a single PCR amplification followed either by restriction fragment length polymorphism analysis, or direct sequencing. In the panel of strains tested, the sequencing-based method displays equivalent inter-lineage resolution to recent multi- locus sequence typing assays. Due to their simplicity and low cost, the proposed assays represent a good alternative to rapidly screen strain collections, providing the cornerstone for the development of robust typing strategies.


Asunto(s)
Dermatoglifia del ADN/métodos , ADN Protozoario/genética , Parasitología/métodos , Polimorfismo de Nucleótido Simple , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Enfermedad de Chagas/parasitología , Enzimas de Restricción del ADN/metabolismo , ADN Protozoario/química , Humanos , Tamizaje Masivo/economía , Tamizaje Masivo/métodos , Datos de Secuencia Molecular , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA