Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811946

RESUMEN

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Asunto(s)
Basidiomycota , Micorrizas , Micorrizas/genética , Simbiosis/genética , Basidiomycota/genética , Raíces de Plantas , Azúcares
2.
J Chem Inf Model ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907694

RESUMEN

Molecular Dynamics Flexible Fitting (MDFF) is a widely used tool to refine high-resolution structures into cryo-EM density maps. Despite many successful applications, MDFF is still limited by its high computational cost, overfitting, accuracy, and performance issues due to entrapment within wrong local minima. Modern ensemble-based MDFF tools have generated promising results in the past decade. In line with these studies, we present MDFF_NM, a stochastic hybrid flexible fitting algorithm combining Normal Mode Analysis (NMA) and simulation-based flexible fitting. Initial tests reveal that, besides accelerating the fitting process, MDFF_NM increases the diversity of fitting routes leading to the target, uncovering ensembles of conformations in closer agreement with experimental data. The potential integration of MDFF_NM with other existing methods and integrative modeling pipelines is also discussed.

3.
Environ Res ; 241: 117548, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939803

RESUMEN

The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physico-chemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.


Asunto(s)
Cubierta de Hielo , Microbiota , Regiones Antárticas , Hongos/genética , Bacterias/genética , Suelo/química , Microbiología del Suelo
4.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33590773

RESUMEN

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Asunto(s)
Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Perros , Cobayas , Humanos , Ratones
5.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887213

RESUMEN

Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.


Asunto(s)
Proteína HMGB1 , Dominios HMG-Box , Proteína HMGB1/metabolismo , Isoenzimas/metabolismo , Estructura Terciaria de Proteína , Piruvato Quinasa/metabolismo
6.
Environ Monit Assess ; 193(5): 308, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909164

RESUMEN

The water quality and trends in 12 tropical rivers in northeastern Brazil over a 27-year period (1990-2016; N = 39,008 samples) were evaluated. The analyzed parameters included temperature, conductivity, pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrogen (NH4+), total phosphorus (P), and fecal coliforms. Densely populated basins (> 1000 inhab km-2) presented lower DO values (average 3.4 mg l-1; 43% DO saturation), while those with low demographic density (< 100 inhab km-2) presented values that aligned well with the recommendations of environmental legislation (average 5.8 mg l-1; 75% DO saturation). The NH4+ and P compound concentrations were typical of water bodies affected by urban inputs. The average p values were above the allowable limit (< 0.1 mg l-1) at all stations. The NH4+ values were high at the stations showing low DO concentrations, which suggested that due to reducing conditions after NH4+ accumulation was favored in those aquatic systems. In densely populated basins, the average fecal coliform concentrations were > 40,000 MPN 100 ml-1, indicating the input of improperly treated domestic/industrial liquid wastes. For the period from 1990 to 2016, 45% of the stations (N = 19) showed a rate of DO reduction that ranged from 0.01 to 0.17 mg l-1.O2 year-1. An increase in NH4+ concentrations was observed in 33% of the stations (N = 14), with an estimated average increase rate from 0.013 to 1.8 mg l-1 NH4+ year-1. These results demonstrated that the rates of increase in anthropogenic factors were significant (p < 0.05), while the natural factors remained constant.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
7.
Proteins ; 88(12): 1675-1687, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32683717

RESUMEN

Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.


Asunto(s)
Catepsina K/química , Catepsina K/metabolismo , Dominios y Motivos de Interacción de Proteínas , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Comunicación , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
8.
Immunogenetics ; 72(5): 333-337, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32556498

RESUMEN

The aim of this study was to evaluate the expression of human leukocyte antigen G (HLA-G) in leprosy. Biopsy and serum samples were collected from 18 patients presenting with leprosy and from healthy controls. Samples were analyzed using immunohistochemistry and ELISA techniques. HLA-G expression was observed in biopsy samples of all patients. The healthy control samples were consistently negative for HLA-G expression. Control plasma samples displayed significantly higher HLA-G expression than those from the patients (p < 0.01). These results are the first demonstration of the expression of HLA-G in leprosy.


Asunto(s)
Antígenos HLA-G/metabolismo , Lepra/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Lepra/clasificación , Masculino , Persona de Mediana Edad , Piel/metabolismo , Adulto Joven
9.
New Phytol ; 228(2): 712-727, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32562507

RESUMEN

Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been described as using these secreted effectors to promote host colonization. Here we characterize a mycorrhiza-induced small secreted effector protein of 10 kDa produced by the ectomycorrhizal fungus Pisolithus albus, PaMiSSP10b. We demonstrate that PaMiSSP10b is secreted from fungal hyphae, enters the cells of its host, Eucalyptus grandis, and interacts with an S-adenosyl methionine decarboxylase (AdoMetDC) in the polyamine pathway. Plant polyamines are regulatory molecules integral to the plant immune system during microbial challenge. Using biochemical and transgenic approaches we show that expression of PaMiSSP10b influences levels of polyamines in the plant roots as it enhances the enzymatic activity of AdoMetDC and increases the biosynthesis of higher polyamines. This ultimately favours the colonization success of P. albus. These results identify a new mechanism by which mutualistic microbes are able to manipulate the host´s enzymatic pathways to favour colonization.


Asunto(s)
Eucalyptus , Micorrizas , Basidiomycota , Raíces de Plantas , Poliaminas , Simbiosis
10.
J Chem Inf Model ; 60(5): 2419-2423, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-31944765

RESUMEN

Previous studies demonstrated the efficiency of the Molecular Dynamics with excited Normal Modes (MDeNM) method on the characterization of large structural changes at a low computational cost. We present here MDeNM-EMfit, an extension of the original method designed to the flexible fit of structures into cryo-EM maps. Here, instead of a uniform exploration of the collective motions described by normal modes, sampling is directed toward conformations with increased correlations with the experimental map. Future perspectives to improve the accuracy of fitting and speed of calculations are discussed in light of the results.


Asunto(s)
Simulación de Dinámica Molecular , Microscopía por Crioelectrón , Conformación Proteica
11.
Ann Diagn Pathol ; 39: 30-35, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30634138

RESUMEN

Breast impalpable lesions have become a clinical dilemma because they are small, presenting a heterogeneous cellular phenotype. The aim of this study was to evaluate the mutational profile of the PIK3CA, TP53, and CDKN2A genes, comparing the mammary tissue with the respective circulating free DNA (cfDNA). The PIK3CA, TP53, and CDKN2A genes were sequenced (PCR-Sanger) in 58 women with impalpable lesions (49 malignant and 9 benign) with the respective cfDNA. The chi-square or Fisher's exact test was used to evaluate statistical significance between the clinical variables and mutational profile. A total of 51 out of 58 samples generated successful mutation profiles in both breast lesion and cfDNA. Of the 37 mutations detected, 10 (27%) and 16 (43%) mutations were detected in benign and malignant breast lesions, respectively, while 2 (5%) and 9 (24%) were found in cfDNA of women with benign and malignant lesions, respectively. The lymph node involvement with mutations in the PIK3CA in malignant lesions (P = 0.001), and the relationship between mutations in PIK3CA, comparing ductal tumors with benign lesions (P = 0.05), were statistically significant. This study detected different mutations in PIK3CA, TP53, and CDKN2A genes, which represent, in part, the heterogeneity of impalpable lesions. The results confirm that more studies should be conducted on the functional role of cfDNA in the impalpable lesions.


Asunto(s)
Neoplasias de la Mama/genética , Mama/química , Ácidos Nucleicos Libres de Células/genética , Metástasis Linfática/genética , Mutación , Análisis de Secuencia de ADN/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Mama/patología , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Detección Precoz del Cáncer , Femenino , Heterogeneidad Genética , Humanos , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética
12.
Int J Mol Sci ; 20(19)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581693

RESUMEN

The aim of this study was to identify genes with higher expression in solid tumor cells by comparing human tumor biopsies with healthy blood samples using both in silico statistical analysis and experimental validations. This approach resulted in a novel panel of 80 RNA biomarkers with high discrimination power to detect circulating tumor cells in blood samples. To identify the 80 RNA biomarkers, Affymetrix HG-U133 plus 2.0 microarrays datasets were used to compare breast tumor tissue biopsies and breast cancer cell lines with blood samples from patients with conditions other than cancer. A total of 859 samples were analyzed at the discovery stage, consisting of 417 mammary tumors, 41 breast lines, and 401 control samples. To confirm this discovery, external datasets of eight types of tumors were used, and experimental validation studies (NanoString n-counter gene expression assay) were performed, totaling 5028 samples analyzed. In these analyses, the 80 biomarkers showed higher expression in all solid tumors analyzed relative to healthy blood samples. Experimental validation studies using NanoString assay confirmed the results were not dependent of the gene expression platform. A panel of 80 RNA biomarkers was described here, with the potential to detect solid tumor cells present in the blood of multiple tumor types.


Asunto(s)
Biomarcadores de Tumor , Neoplasias/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Neoplásicas Circulantes/metabolismo , Reproducibilidad de los Resultados
13.
Microb Pathog ; 118: 277-284, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29605649

RESUMEN

Mast cells (MCs) have important immunoregulatory roles in skin inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory protein that can be expressed by mast cells, neutrophils, eosinophils, monocytes, epithelial and T cells. This study investigated MCs heterogeneity and ANXA1 expression in human dermatoses with special emphasis in leprosy. Sixty one skin biopsies from 2 groups were investigated: 40 newly diagnosed untreated leprosy patients (18 reaction-free, 11 type 1 reaction/T1R, 11 type 2 reaction/T2R); 21 patients with other dermatoses. Tryptase/try+ and chymase/chy + phenotypic markers and toluidine blue stained intact/degranulated MC counts/mm2 were evaluated. Try+/chy+ MCs and ANXA1 were identified by streptavidin-biotin-peroxidase immunostaining and density was reported. In leprosy, degranulated MCs outnumbered intact ones regardless of the leprosy form (from tuberculoid/TT to lepromatous/LL), leprosy reactions (reactional/reaction-free) and type of reaction (T1R/T2R). Compared to other dermatoses, leprosy skin lesions showed lower numbers of degranulated and intact MCs. Try+ MCs outnumbered chy+ in leprosy lesions (reaction-free/reactional, particularly in T2R), but not in other dermatoses. Compared to other dermatoses, ANXA1 expression, which is also expressed in mast cells, was higher in the epidermis of leprosy skin lesions, independently of reactional episode. In leprosy, higher MC degranulation and differential expression of try+/chy+ subsets independent of leprosy type and reaction suggest that the Mycobacterium leprae infection itself dictates the inflammatory MCs activation in skin lesions. Higher expression of ANXA1 in leprosy suggests its potential anti-inflammatory role to maintain homeostasis preventing tissue and nerve damage.


Asunto(s)
Anexina A1/biosíntesis , Anexina A1/inmunología , Antiinflamatorios/inmunología , Antiinflamatorios/metabolismo , Lepra/inmunología , Lepra/metabolismo , Mastocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Brasil , Quimasas/metabolismo , Epidermis/inmunología , Epidermis/patología , Femenino , Humanos , Lepra/patología , Lepra Lepromatosa/metabolismo , Lepra Tuberculoide/metabolismo , Masculino , Mastocitos/patología , Persona de Mediana Edad , Mycobacterium leprae/inmunología , Mycobacterium leprae/patogenicidad , Piel/patología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología , Triptasas/metabolismo , Adulto Joven
14.
Eur Biophys J ; 47(5): 583-590, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29546436

RESUMEN

There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer ß-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in ß-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas PrPC/química , Proteínas PrPSc/química , Agregado de Proteínas , Humanos , Concentración de Iones de Hidrógeno , Conformación Proteica en Lámina beta , Pliegue de Proteína
15.
Proc Natl Acad Sci U S A ; 112(5): 1601-6, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605885

RESUMEN

How G protein-coupled receptor conformational dynamics control G protein coupling to trigger signaling is a key but still open question. We addressed this question with a model system composed of the purified ghrelin receptor assembled into lipid discs. Combining receptor labeling through genetic incorporation of unnatural amino acids, lanthanide resonance energy transfer, and normal mode analyses, we directly demonstrate the occurrence of two distinct receptor:Gq assemblies with different geometries whose relative populations parallel the activation state of the receptor. The first of these assemblies is a preassembled complex with the receptor in its basal conformation. This complex is specific of Gq and is not observed with Gi. The second one is an active assembly in which the receptor in its active conformation triggers G protein activation. The active complex is present even in the absence of agonist, in a direct relationship with the high constitutive activity of the ghrelin receptor. These data provide direct evidence of a mechanism for ghrelin receptor-mediated Gq signaling in which transition of the receptor from an inactive to an active conformation is accompanied by a rearrangement of a preassembled receptor:G protein complex, ultimately leading to G protein activation and signaling.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Receptores de Ghrelina/química , Transferencia de Energía , Conformación Proteica
16.
J Environ Manage ; 207: 417-422, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190484

RESUMEN

C:N:P ratio is generally adopted to estimate the amount of nitrogen and phosphorus to be added to soils to accelerate biodegradation of organic contaminants. However, differences in P fixation among soils lead to varying amounts of available P when a specific dose of the element is applied to different soils. Thus, the application of fertilizers to achieve a previously established C:P ratio leads to biodegradation rates that can be lower than the theoretical maximum. In this study, we developed an equation to estimate the dose of P required to maximize organic contaminant biodegradation in soils as a function of remaining P (P-rem), using diesel as a model contaminant. The soils were contaminated with diesel and received six doses of P. CO2 emission was used to estimate biodegradation of hydrocarbons. Biodegradation increased with P doses. The P level that provided the highest hydrocarbon biodegradation rate showed linear and negative correlation with P-rem. The result shows that the requirement for P decreases as the P-rem of the soil increases (or the P-fixing capacity decreases). The dose of P recommended to maximize hydrocarbon biodegradation rate in soil can be estimated by the formula P (mg/dm3) = 436.5-5.39 × P-rem (mg/L).


Asunto(s)
Biodegradación Ambiental , Contaminantes del Suelo , Bacterias , Hidrocarburos , Petróleo , Suelo , Microbiología del Suelo
17.
BMC Genomics ; 18(1): 157, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196466

RESUMEN

BACKGROUND: Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. RESULTS: Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as "Internal spores", IS) and external free basidiospores (hereto referred to as "Free spores", FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to ß-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. CONCLUSION: Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.


Asunto(s)
Basidiomycota/genética , Cuerpos Fructíferos de los Hongos/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Transcriptoma , Ciclo Celular/genética , Análisis por Conglomerados , Biología Computacional/métodos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
18.
Proc Natl Acad Sci U S A ; 111(25): E2524-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927554

RESUMEN

The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.


Asunto(s)
Autoinmunidad , Glutamato Descarboxilasa , Homeostasis/inmunología , Simulación de Dinámica Molecular , Neurotransmisores , Ácido gamma-Aminobutírico , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/inmunología , Humanos , Neurotransmisores/química , Neurotransmisores/genética , Neurotransmisores/inmunología , Multimerización de Proteína , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/inmunología
19.
Mem Inst Oswaldo Cruz ; 112(9): 617-625, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28902287

RESUMEN

BACKGROUND: Leishmanolysins have been described as important parasite virulence factors because of their roles in the infection of promastigotes and resistance to host's defenses. Leishmania (Viannia) braziliensis contains several leishmanolysin genes in its genome, especially in chromosome 10. However, the functional impact of such diversity is not understood, but may be attributed partially to the lack of structural data for proteins from this parasite. OBJECTIVES: This works aims to compare leishmanolysin sequences from L. (V.) braziliensis and to understand how the diversity impacts in their structural and dynamic features. METHODS: Leishmanolysin sequences were retrieved from GeneDB. Subsequently, 3D models were built using comparative modeling methods and their dynamical behavior was studied using molecular dynamic simulations. FINDINGS: We identified three subgroups of leishmanolysins according to sequence variations. These differences directly affect the electrostatic properties of leishmanolysins and the geometry of their active sites. We identified two levels of structural heterogeneity that might be related to the ability of promastigotes to interact with a broad range of substrates. MAIN CONCLUSION: Altogether, the structural plasticity of leishmanolysins may constitute an important evolutionary adaptation rarely explored when considering the virulence of L. (V.) braziliensis parasites.


Asunto(s)
Variación Genética , Leishmania braziliensis/genética , Metaloendopeptidasas/genética , Conformación Proteica , Cromosomas , Humanos , Modelos Moleculares
20.
J Environ Sci Health B ; 52(2): 115-121, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27820678

RESUMEN

This study aimed to isolate and characterize bacteria able to use sulfentrazone in the commercial formulation as their sole carbon source. The isolation of the potential sulfentrazone-degrading bacteria was made from soil samples with a recent history of herbicide application and from isolates identified through rDNA sequencing. Subsequently, we assessed the growth of the isolates and their sulfentrazone degradation ability using high-performance liquid chromatography. Twenty-six potential sulfentrazone-degrading bacterial isolates were obtained in pure culture. Through analysis of the rDNA sequences, the predominance of bacterial species of the genus Pseudomonas was found. The isolates presented a differentiated ability of sulfentrazone degradation. The presence of herbicide in the culture medium reduced the log phase of four isolates. Pseudomonas putida, Pseudomonas lutea, Pseudomonas plecoglossicida and three isolates of Pseudomonas sp. showed higher sulfentrazone degradation capacity, which varied from 4 to 15%. This is the first report of the Pseudomonas genre capable of sulfentrazone degradation. The isolates obtained present potential use in bioremediation programs for soil contaminated with sulfentrazone.


Asunto(s)
Pseudomonas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Sulfonamidas/metabolismo , Triazoles/metabolismo , Biodegradación Ambiental , Medios de Cultivo/química , ADN Ribosómico/genética , Herbicidas/metabolismo , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas putida/genética , Pseudomonas putida/aislamiento & purificación , Pseudomonas putida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA