Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474919

RESUMEN

One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food chain. However, this is not a simple task, because it is necessary to establish the parameters to be analyzed and often, not only one compound is responsible for food contamination or degradation. To attempt to address this problem, a multiplex analysis together with a non-directed (e.g., general parameters such as pH) analysis are the most relevant alternatives to identifying the safety of dairy food. In recent years, the use of new technologies in the development of devices/platforms with optical or electrochemical signals has accelerated and intensified the pursuit of systems that provide a simple, rapid, cost-effective, and/or multiparametric response to the presence of contaminants, markers of various diseases, and/or indicators of safety levels. However, achieving the simultaneous determination of two or more analytes in situ, in a single measurement, and in real time, using only one working 'real sensor', remains one of the most daunting challenges, primarily due to the complexity of the sample matrix. To address these requirements, different approaches have been explored. The state of the art on food safety sensors will be summarized in this review including optical, electrochemical, and other sensor-based detection methods such as magnetoelastic or mass-based sensors.


Asunto(s)
Contaminación de Alimentos , Inocuidad de los Alimentos , Animales , Contaminación de Alimentos/análisis , Leche/química
2.
Anal Chem ; 95(27): 10430-10437, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37367956

RESUMEN

Herein, we introduce the first relative single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach where size calibration is carried out using the target NP itself measured under different instrumental conditions without external dependence on the complex and prone-to-error determination of transport efficiency or mass flux calibrations, in contrast to most spICP-MS approaches. The simple approach proposed allows determining gold nanoparticle (AuNP) sizes, with errors ranging from 0.3 to 3.1% (corroborated by HR-TEM). It has been demonstrated that the changes observed in the single-particle histograms obtained for a suspension of AuNPs under different sensitivity conditions (n = 5) are directly and exclusively related to the mass (size) of the target AuNP itself. Interestingly, the relative nature of the approach shows that once the ICP-MS system has been calibrated with a generic NP standard, it is no longer necessary to repeat the calibration for the size determination of different unimetallic NPs carried out along time (at least 8 months), independently of their size (16-73 nm) and even nature (AuNP or AgNP). Additionally, neither the NP surface functionalization with biomolecules nor protein corona formation led to significant changes (relative errors slightly increased 1.3- to 1.5-fold, up to 7%) in the NP size determination, in contrast to conventional spICP-MS approaches where relative errors increased 2- to 8-fold, up to 32%. This feature could be especially valuable for the analysis of NPs in real samples without the need of matrix-matched calibration.

3.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772764

RESUMEN

Adulterations of olive oil are performed by adding seed oils to this high-quality product, which are cheaper than olive oils. Food safety controls have been established by the European Union to avoid these episodes. Most of these methodologies require expensive equipment, time-consuming procedures, and expert personnel to execute. Near-infrared spectroscopy (NIRS) technology has many applications in the food processing industry. It analyzes food safety and quality parameters along the food chain. Using principal component analysis (PCA), the differences and similarities between olive oil and seed oils (sesame, sunflower, and flax oil) have been evaluated. To quantify the percentage of adulterated seed oil in olive oils, partial least squares (PLS) have been employed. A total of 96 samples of olive oil adulterated with seed oils were prepared. These samples were used to build a spectra library covering various mixtures containing seed oils and olive oil contents. Eighteen chemometric models were developed by combining the first and second derivatives with Standard Normal Variable (SNV) for scatter correction to classify and quantify seed oil adulteration and percentage. The results obtained for all seed oils show excellent coefficients of determination for calibration higher than 0.80. Because the instrumental aspects are not generally sufficiently addressed in the articles, we include a specific section on some key aspects of developing a high-performance and cost-effective NIR spectroscopy solution for fraud detection in olive oil. First, spectroscopy architectures are introduced, especially the Texas Instruments Digital Light Processing (DLP) technology for spectroscopy that has been used in this work. These results demonstrate that the portable prototype can be used as an effective tool to detect food fraud in liquid samples.


Asunto(s)
Aceites de Plantas , Espectroscopía Infrarroja Corta , Aceite de Oliva/análisis , Aceites de Plantas/análisis , Espectroscopía Infrarroja Corta/métodos , Contaminación de Alimentos/análisis , Fraude/prevención & control , Aceite de Girasol
4.
Anal Bioanal Chem ; 414(18): 5201-5215, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35292825

RESUMEN

Nucleic acid enzymes (NAzymes) are a class of nucleic acid molecules with catalytic activity, which can be modulated by the presence of different species such as metal ions, genetic biomarkers, small molecules or proteins, among others. NAzymes offer several important advantages for development of novel bioanalytical strategies, resulting from their functionality as specific recognition elements and as amplified analytical signal generators, making them ideal candidates for developing highly specific bioanalytical strategies for the detection of a wide variety of targets. When coupled with the exceptional features of inorganic nanoparticles (NPs), the sensitivity of the assays can be significantly improved, allowing the detection of targets using many different detection techniques including visual readout, spectrophotometry, fluorimetry, electrochemiluminescence, voltammetry, and single-particle inductively coupled plasma-mass spectrometry. Here we provide an overview of the fundamentals of novel strategies developed to achieve analytical signal amplification based on the use of NAzymes coupled with inorganic NPs. Some representative examples of such strategies for the highly sensitive detection of different targets will be presented, including metal ions, proteins, DNA- or RNA-based biomarkers, and small molecules or microorganisms. Furthermore, future prospective challenges will be discussed.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Ácidos Nucleicos , Biomarcadores , Técnicas Biosensibles/métodos , ADN/química , Metales/química , Nanopartículas/química , Técnicas de Amplificación de Ácido Nucleico , Proteínas
5.
Anal Bioanal Chem ; 414(1): 53-62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33674934

RESUMEN

The current trends in modern medicine towards early diagnosis, or even prognosis, of different diseases have brought about the need for the corresponding biomarker detection at ever lower levels in really complex matrices. To do so, it is necessary to use proper extremely sensitive detection techniques such as elemental mass spectrometry. However, target labelling with metals for subsequent sensitive ICP-MS detection falls short nowadays even if resorting to inorganic nanoparticles containing a high number of detectable elements. Thus, new amplification strategies are being proposed to face this analytical challenge that will be critically discussed in this paper. Fundamentals of different novel strategies developed to achieve signal amplification and sensitive elemental mass spectrometry detection are here discussed. Some representative examples of relevant clinical applications are highlighted, along with future prospects and challenges.


Asunto(s)
Biomarcadores/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Células Hep G2 , Humanos , Sensibilidad y Especificidad
6.
Sensors (Basel) ; 22(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35214214

RESUMEN

Breast milk is an optimal food that covers all the nutritional needs of the newborn. It is a dynamic fluid whose composition varies with lactation period. The neonatal units of hospitals have human milk banks, a service that analyzes, stores, and distributes donated human milk. This milk is used to feed premature infants (born before 32 weeks of gestation or weighing less than 1500 g) whose mothers, for some reason, cannot feed them with their own milk. Here, we aimed to develop near-infrared spectroscopy (NIRS) measures for the analysis of breast milk. For this purpose, we used a portable NIRS instrument scanning in the range of 1396-2396 nm to collect the spectra of milk samples. Then, different chemometrics were calculated to develop 18 calibration models with and without using derivatives and the standard normal variate. Once the calibration models were developed, the best treatments were selected according to the correlation coefficients (r2) and prediction errors (SECVs). The best results for the assayed macronutrients were obtained when no pre-treatment was applied to the NIR spectra of fat (r2 = 0.841, SECV = 0.51), raw protein (r2 = 0.512, SECV = 0.21), and carbohydrates (r2 = 0.741, SECV = 1.35). SNV plus the first derivative was applied to obtain satisfactory results for energy (r2 = 0.830, SECV = 9.60) quantification. The interpretation of the obtained results showed the richness of the NIRS spectra; moreover, the presence of specific bands for fat provided excellent statistics in quantitative models. These results demonstrated the ability of portable NIRS sensors in a methodology developed for the quality control of macronutrients in breast milk.


Asunto(s)
Lactancia , Leche Humana , Calibración , Femenino , Humanos , Recién Nacido , Nutrientes , Espectroscopía Infrarroja Corta/métodos
7.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34841876

RESUMEN

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Asunto(s)
Mercurio/efectos adversos , Nanopartículas/efectos adversos , Selenio/efectos adversos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Mercurio/metabolismo , Nanopartículas/metabolismo , Selenio/metabolismo , Células Tumorales Cultivadas
8.
Ecotoxicol Environ Saf ; 226: 112867, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34624529

RESUMEN

Mercury (Hg) is one of the most toxic environmental pollutants, and is biocondensed via the food chain. Selenium (Se) is an essential element that possesses an antagonistic property towards Hg in vivo. The antagonistic property is explained by the assumption that Hg and Se directly interact to form HgSe nanoparticles (HgSe NPs) in organs. It is presumed that the toxic effects of HgSe NPs are lower than that of ionic Hg; however, no precise evaluation has been conducted so far. In the present study, we evaluated the distribution of HgSe NPs ingested in Se-deficient rats. The recovery of serum selenoproteins from a deficient level was not observed in rats orally administered HgSe NPs. In addition, the excretion of Hg and Se via urine was not observed. Interestingly, the biosynthesis of selenoproteins and urinary selenometabolites would have required the production of selenide through the degradation of HgSe NPs. Therefore, it seems that selenide and Hg are not released from HgSe NPs in vivo. The administration of HgSe NPs did not increase Hg and Se concentrations in organs, and almost all HgSe NPs were recovered in feces, indicating no or low bioaccessibility of HgSe NPs even in Se-deficient rats. These results suggest that HgSe NPs are biologically inert and do not become a secondary environmental pollutant of Hg.


Asunto(s)
Contaminantes Ambientales , Mercurio , Nanopartículas , Selenio , Animales , Contaminantes Ambientales/toxicidad , Mercurio/análisis , Ratas
9.
Mikrochim Acta ; 187(3): 169, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060641

RESUMEN

In this work, novel silver sulphide quantum dots (Ag2S QD) are electrochemically quantified for the first time. The method is based on the electrochemical reduction of Ag+ to Ag0 at -0.3 V on screen-printed carbon electrodes (SPCEs), followed by anodic stripping voltammetric oxidation that gives a peak of currents at +0.06 V which represents the analytical signal. The optimized methodology allows the quantification of water-stabilized Ag2S QD in the range of approximately 2 × 109-2 × 1012 QD·mL-1 with a good reproducibility (RSD: 5%). Moreover, as proof-of-concept of relevant biosensing application, Ag2S QD are evaluated as tags for Escherichia coli (E. coli) bacteria determination. Bacteria tagged with QD are separated by centrifugation from the sample solution and placed on the SPCE surface for quantitative analysis. The effect of two different Ag2S QD surface coating/stabilizing agents on both the voltammetric response and the bacteria sensing is also evaluated. 3-mercaptopropionic acid (3-MPA) is studied as model of short length coating ligand with no affinity for the bacteria, while boronic acid (BA) is evaluated as longer length ligand with chemical affinity for the polysaccharides present in the peptidoglycan layer on the bacteria cells surface. The biosensing system allows to detect bacteria in the range 10-1-103 bacteria·mL-1 with a limit of detection as low as 1 bacteria·mL-1. This methodology is a promising proof-of-concept alternative to traditional laboratory-based tests, with good sensitivity and short time and low cost of analysis. Graphical abstractNovel silver sulphide quantum dots (Ag2S QD) are electrochemically quantified for the first time. Moreover, Ag2S QD are evaluated as tags for Escherichia coli bacteria determination. The effect of two different QD surface coating ligands is also evaluated.


Asunto(s)
Bacterias/patogenicidad , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Compuestos de Plata/química , Ligandos
10.
Bioconjug Chem ; 29(8): 2646-2653, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29989798

RESUMEN

The use of functionalized magnetic particles is increasing because they simplify the analytical process and yield promising results in a wide range of applications. Particularly, streptavidin-coated magnetic beads offer the possibility of rapid and very efficient grafting of biomolecules. Unfortunately, current methods to monitor and compute this grafting process are cumbersome and scarce. We describe herein a simple, rapid, and reliable chemiluminescent assay we have developed to check the grafting rate of functionalized magnetic beads. The power of the assay also relies on its ability to predict the amount of ligands required to obtain a precise grafting rate. In addition, results were correlated with a more general parameter in material functionalization characterization like surface ligand density. Finally, the assay was validated for a wide variety of biotinylated biomolecule sizes, ranging from small molecules (around 200 Da) to antibodies (around 150 kDa). This approach will allow a precise quantification and prediction of the functionalization of magnetic particles that is of enormous importance for quality control in many applications.


Asunto(s)
Mediciones Luminiscentes/normas , Magnetismo , Proteínas/química , Estreptavidina/química , Bioensayo , Biotinilación , Peroxidasa de Rábano Silvestre/química , Ligandos , Peso Molecular , Propiedades de Superficie
11.
Langmuir ; 33(25): 6333-6341, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28555495

RESUMEN

Colloidal Mn2+-doped ZnS quantum dots (QDs) were synthesized, surface modified, and thoroughly characterized using a pool of complementary techniques. Cap exchange of the native l-cysteine coating of the QDs with dihydrolipoic acid (DHLA) ligands is proposed as a strategy to produce nanocrystals with a strong phosphorescent-type emission and improved aqueous stability. Moreover, such a stable DHLA coating can facilitate further bioconjugation of these QDs to biomolecules using established reagents such as cross-linker molecules. First, a structural and morphological characterization of the l-cysteine QD core was performed by resorting to complementary techniques, including X-ray powder diffraction (XRD) and microscopy tools. XRD patterns provided information about the local structure of ions within the nanocrystal structure and the number of metal atoms constituting the core of a QD. The judicious combination of the data obtained from these complementary characterization tools with the analysis of the QDs using inductively coupled plasma-mass spectrometry (ICP-MS) allowed us to assess the number concentration of nanoparticles in an aqueous sample, a key parameter when such materials are going to be used in bioanalytical or toxicological studies. Asymmetric flow field-flow fractionation (AF4) coupled online to ICP-MS detection proved to be an invaluable tool to compute the number of DHLA molecules attached to the surface of a single QD, a key feature that is difficult to estimate in nanoparticles and that critically affects the behavior of nanoparticles when entering the biological media (e.g., cellular uptake, biodistribution, or protein corona formation). This hybrid technique also allowed us to demonstrate that the elemental composition of the nanoparticle core remains unaffected after the ligand exchange process. Finally, the photostability and robustness of the DHLA-capped QDs, critical parameters for bioanalytical applications, were assessed by molecular luminescence spectroscopy.

12.
Nanotechnology ; 26(21): 215601, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25944823

RESUMEN

A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

13.
Anal Bioanal Chem ; 406(29): 7431-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24518898

RESUMEN

The performance of radiofrequency (rf) millisecond pulsed glow discharge (PGD) coupled to a fast orthogonal time-of-flight mass spectrometer (TOFMS) for chemical characterization and quantification of organic volatile compounds was investigated by using two different GD chamber designs. The designs investigated had substantial differences in the way that the volatile organic compound is introduced into the GD and the distance between the cathode and the sampling cone of the mass spectrometer. Bromochloromethane was selected as the model analyte because of the practical interest of determining trihalomethanes at low concentrations, and also because of both its low boiling point (to avoid problems associated with condensations in the interface) and the fact that it has two different heteroatoms, making the fragmentation patterns easier to follow. Pulse shapes of element, fragment, and molecular parent ions obtained by using the two GD chambers under investigation were critically compared. Results revealed the critical effect of the GD chamber geometry in obtaining the three types of chemical information, temporally discriminated. The spectra of the gaseous samples and of a polymer containing TBBPA (solid sample) were also compared. Detection limits for bromochloromethane in the order of low ng L(-1), and the required high tolerance of the plasmas to the introduction of organic vapours, were achieved using one of the proposed GD designs. The capability of the designed system for the analysis of other volatile compounds, for example dimethyl disulfide and dimethyl selenide, was also successfully evaluated, making use of the analytical potential of the information obtained from the different pulse time regions.

14.
Anal Chim Acta ; 1285: 341999, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057053

RESUMEN

A major challenge in the 21st century is the development of point-of-care diagnostic tools capable to detect and quantify disease biomarkers in a straightforward, affordable, sensitive, and specific manner. The remarkable plasmonic properties of gold nanoparticles (AuNPs) have promoted their use for development of simple methodologies for nucleic acid detection in combination with a variety of oligonucleotides amplification techniques. Here, assemblies of AuNPs with Multicomponent Nucleic Acid enzymes (MNAzymes) has been successfully used in the design of a highly sensitive and simple bioassay for rapid spectroscopic detection and quantification of miRNA-4739 in blood samples. The miRNA selected is a doxorubicin chemoresistant biomarker in breast cancer which overexpression promotes the proliferation, progression, and survival of cancer cells. In this work, two alternatives experimental designs, based on use of MNAzymes and AuNPs, have been optimized and applied for sensitive miRNA-4739 quantification: one based on a traditional direct measurement of wavelength shift and a second non-conventional simple approach based on isolation and measurement of free nanoparticles absorbance. Improvement in sensitivity and, higher measurement accuracy and precision were achieved with the second approach. The developed bioassay provides a detection limit as low as 7 pmolL-1 for miRNA-4739 quantification and performed satisfactory selectivity and well practical applicability by analysis of the miRNA-4739 in blood, demonstrating that the proposed strategy is a promising and suitable spectroscopic method for breast cancer diagnosis thought liquid biopsy of circulating tumoral cells.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Nanopartículas del Metal , MicroARNs , Ácidos Nucleicos , Humanos , Femenino , MicroARNs/análisis , Biomarcadores de Tumor , Oro/química , Neoplasias de la Mama/diagnóstico , Límite de Detección , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Técnicas de Amplificación de Ácido Nucleico/métodos
15.
Talanta ; 275: 126095, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653118

RESUMEN

One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to µm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.


Asunto(s)
Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Antígeno Prostático Específico , Plata , Teléfono Inteligente , Oro/química , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/análisis , Nanopartículas del Metal/química , Plata/química , Humanos , Técnicas Electroquímicas/métodos , Galvanoplastia , Inmunoensayo/métodos , Límite de Detección , Técnicas Biosensibles/métodos , Anticuerpos/inmunología , Anticuerpos/química , Masculino , Compuestos de Estaño
16.
Appl Spectrosc ; : 37028241263567, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881037

RESUMEN

The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review.

17.
Nanotechnology ; 24(49): 495601, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24231856

RESUMEN

A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g., stored at pH 3-12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications.


Asunto(s)
Cobre/química , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Materiales Biocompatibles/química , Fluorescencia , Concentración de Iones de Hidrógeno , Ligandos , Tamaño de la Partícula , Fosfatos/química , Polietilenglicoles/química , Solubilidad , Espectrometría de Fluorescencia/instrumentación , Propiedades de Superficie
18.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986026

RESUMEN

The prolific applicability of nanomaterials has made them a common citizen in biological systems, where they interact with proteins forming a biological corona complex. These complexes drive the interaction of nanomaterials with and within the cells, bringing forward numerous potential applications in nanobiomedicine, but also arising toxicological issues and concerns. Proper characterization of the protein corona complex is a great challenge typically handled with the combination of several techniques. Surprisingly, despite inductively coupled plasma mass spectrometry (ICP-MS) being a powerful quantitative technique whose application in nanomaterials characterization and quantification has been consolidated in the last decade, its application to nanoparticle-protein corona studies is scarce. Furthermore, in the last decades, ICP-MS has experienced a turning point in its capabilities for protein quantification through sulfur detection, hence becoming a generic quantitative detector. In this regard, we would like to introduce the potential of ICP-MS in the nanoparticle protein corona complex characterization and quantification complementary to current methods and protocols.

19.
Anal Chim Acta ; 1284: 341874, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996151

RESUMEN

Carbon nanoparticles (CDs) have recently drawn a great attention in (bio)chemical analysis, sensing and bioimaging owing to their photostability, water stability, minimal toxicity, biocompatibility and ease of surface functionalization. While the vast majority of CDs applications rely on exploiting their fluorescent properties, doping such nanomaterials with various elements has recently received increasing attention as an effective approach to modify their optoelectronic characteristics, introducing novel improved optical features such as phosphorescence, upconversion luminescence or multimodal imaging capabilities. This review article focuses in the recent advances on the synthesis of heteroatom-doped CDs, exhibiting distinctive features of high value for sensing and imaging, as well as various functionalization schemes developed for guided analyte labeling. Relevant applications in chemical sensing, bioimaging and disease therapy are here presented. A final section intends to provide an overview towards future developments of such emerging light-emitting nanomaterials in the design of future devices and strategies for (bio)analytical chemistry.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Carbono/química , Luminiscencia , Agua , Colorantes Fluorescentes/química , Puntos Cuánticos/química
20.
Talanta ; 256: 124309, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753887

RESUMEN

In-depth characterization of functionalized nanomaterials is still a remaining challenge in nanobioanalytical chemistry. In this work, we propose the online coupling of Asymmetric Flow Field-Flow Fractionation (AF4) with UV/Vis, Multiangle Light Scattering (MALS) and Inductively Coupled Plasma-Tandem Mass Spectrometry (ICP-MS/MS) detectors to carry out, in less than 10 min and directly in the functionalization reaction mixture, the complete characterization of gold nanoparticles (AuNPs) functionalized with oligonucleotides and surface-modified with polyethylene glycol (PEG). AF4 separation provided full separation of the bioconjugates from the original AuNPs while P/Au and S/Au ICP-MS/MS ratios in the bioconjugate fractographic peaks could be used to compute the corresponding stoichiometries, oligonucleotide/AuNP and PEG/AuNPs. MALS detection clearly showed the coexistence of two distinct nanoparticulated populations in the bioconjugation mixture, which were demonstrated to be different not only in size but in functionality as well. The major bioconjugate population showed lower hydrodynamic ratios (18 nm) with higher and steadier oligonucleotides/AuNPs (92) and PEG/AuNPs (2350) stoichiometries, in comparison to the minor abundant population (54 nm, 51 and 1877, respectively). Moreover, the ratio between the absorbance signals measured at 520 nm and 650 nm reflects a lower AuNP aggregation in the major (10.5) than in the minor (4.5) population. Results obtained prove the benefits of a detailed characterization to find out if subsequent purification of functionalized AuNP-oligonucleotides is required to design more efficiently their final bioanalytical application.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Espectrometría de Masas en Tándem , Análisis Espectral , Fraccionamiento de Campo-Flujo/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA