Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Food Microbiol ; 122: 104545, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839231

RESUMEN

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Asunto(s)
Aspergillus niger , Calor , Aspergillus niger/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Dióxido de Carbono/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Alicyclobacillus/crecimiento & desarrollo , Alicyclobacillus/fisiología , Bebidas Gaseosas/microbiología , Byssochlamys/crecimiento & desarrollo , Microbiología de Alimentos , Zygosaccharomyces/crecimiento & desarrollo , Zygosaccharomyces/fisiología , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Medios de Cultivo/química , Medios de Cultivo/metabolismo
2.
Food Microbiol ; 114: 104289, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290872

RESUMEN

The growth of six bacterial species (Carnobacterium maltaromaticum, Bacillus weihenstephanensis, Bacillus cereus, Paenibacillus spp., Leuconostoc mesenteroides and Pseudomonas fragi) was studied in various gas compositions. Growth curves were obtained at various oxygen concentrations (between 0.1 and 21%), or various carbon dioxide concentrations (between 0 and 100%). Decreasing the O2 concentration from 21% to about 3-5% has no effect on the bacterial growth rates, which are only affected by low oxygen levels. For each strain studied, the growth rate decreased linearly with carbon dioxide concentration, except for L. mesenteroides which remained insensible to this gas. Conversely, the most sensitive strain was totally inhibited by 50% of carbon dioxide in the gas phase at 8 °C. Predictive models were fitted, and the parameters characterizing the inhibitory effect of these two gases were estimated. This study provides new tools to help the food industry design suitable packaging for MAP storage.


Asunto(s)
Dióxido de Carbono , Embalaje de Alimentos , Dióxido de Carbono/análisis , Oxígeno/análisis , Microbiología de Alimentos , Conservación de Alimentos , Bacillus cereus , Recuento de Colonia Microbiana
3.
Food Microbiol ; 115: 104324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567633

RESUMEN

In dairy industry, filamentous fungi are used as adjunct cultures in fermented products for their technological properties but they could also be responsible for food spoilage and mycotoxin production. The consumer demands about free-preservative products has increased in recent years and lead to develop alternative methods for food preservation. Modified Atmosphere Packaging (MAP) can inhibit fungal growth and therefore increase the food product shelf-life. This study aimed to evaluate radial growth as a function of CO2 and more particularly carbonic acid for fourteen adjuncts and/or fungal spoiler isolated from dairy products or dairy environment by using predictive mycology tools. The impact of the different chemical species linked to CO2 (notably carbonic acid) were study because it was reported previously that undissociated carbonic acid impacted bacterial growth and bicarbonates ions were involved in modifications of physiological process of fungal cells. A significant diversity in the responses of selected strains was observed. Mucor circinelloides had the fastest growth rates (µ > 11 mm. day-1) while Bisifusarium domesticum, Cladosporium herbarum and Penicillium bialowiezense had the slowest growth rates (µ < 1 mm. day-1). Independently of the medium pH, the majority of strains were sensitive to total carbonic acid. In this case, it was not possible to conclude if CO2 active form was gaseous or aqueous so modeling were performed as a function of CO2 percentage. Only Geotrichum candidum and M. circinelloides strains were sensitive to undissociated carbonic acid. Among the fourteen strains, P. bialowiezense was the less sensitive strain to CO2, no growth was observed at 50% of CO2 only for this strain. M. lanceolatus was the less sensitive strain to CO2, the CO250 which reduce the growth rates by 50% was estimated at 138% of CO2. Low CO2 percentage improved the growth of Penicillium expansum, Penicillium roqueforti and Paecilomyces niveus. Mathematical models (without and with optimum) were suggested to describe the impact of CO2 percentage or undissociated carbonic acid concentration on fungal growth rate.


Asunto(s)
Dióxido de Carbono , Ácido Carbónico , Dióxido de Carbono/farmacología , Hongos , Productos Lácteos/microbiología , Conservación de Alimentos/métodos
4.
Food Microbiol ; 106: 104055, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690448

RESUMEN

Group I Clostridium botulinum and Clostridium sporogenes are physiologically and genetically closely related. Both are widely distributed in the environment and can cause foodborne botulism. In this work, a physiological study was conducted with 37 isolates from spoiled canned food and five referenced strains of C. sporogenes (three isolates) and Group I C. botulinum (two isolates). Growth limits of vegetative cells were established as a function of pH and NaCl concentration in PYG modified medium (PYGm) at 30 °C for 48 days. The heat resistance of the spores was studied for 2 min and 10 min at 102 °C and 110 °C. This physiological study (pH, NaCl growth limits and heat resistance) allowed the selection of 14 isolates of C. sporogenes (twelve isolates) and Group I C. botulinum (two isolates) representative of the diversity found. This panel of 14 selected isolates (11 isolated from spoiled canned food and three reference strains), were whole genome sequenced, but no association of physiological and genetic characteristics could be detected. Finally, we studied the ability of spores to germinate and grow from 5 isolates (four C. sporogenes and one Group I C. botulinum), under stress conditions generated by pH and NaCl following a low intensity heat treatment. The accumulation of these 3 stresses creates synergies that will strongly reduce the probability of spore growth in pH and salt conditions where they usually proliferate. The effect is progressive as the conditions become drastic: the number of decimal reduction observed increases translating a probability of growth which decreases. This study provides a better understanding of the behaviour of C. sporogenes and Group I C. botulinum isolates and shows how the combination of pH, NaCl and heat treatment can help prevent or minimise foodborne botulism outbreaks.


Asunto(s)
Botulismo , Clostridium botulinum , Clostridium , Clostridium botulinum/genética , Microbiología de Alimentos , Calor , Humanos , Concentración de Iones de Hidrógeno , Cloruro de Sodio/farmacología , Esporas Bacterianas
5.
Food Microbiol ; 100: 103832, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416948

RESUMEN

Clostridium sporogenes has been widely used as a surrogate for proteolytic C. botulinum for validating thermal processes in low-acid cans. To limit the intensity of heat treatments, industrials must use other ways of control as an association of acidic and saline environment after a low heat treatment. The probability of growth of pH (7-4.4), sodium chloride concentration (0-11%) and heat treatment (80°C-10 min; 100°C-1.5 min and 5.2 min) were studied on C. sporogenes PA 3679 spores and vegetative cells. Vegetative cells or heat-treated spores were inoculated in PYGm broth at 30 °C for 48 days in anaerobic conditions. Vegetative cells growth (pH 4.6-pH 4.5; 7%-8% NaCl) range is larger than the spore one (pH 5.2-pH 5.0; 6%-7% NaCl). Spores germination and outgrowth rage is decreased if the spores are heat-treated at 100 °C for 1.5 min (pH 5.5-5.3; 4%-5% NaCl) and 5.2 min (pH 5.7-5.3; 4%-5% NaCl). The C. sporogenes PA 3679 spores germination and outgrowth is impacted by their physiological state. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) opening new possibilities for optimizing food formulation processes to manage the risks of C. sporogenes spoilage.


Asunto(s)
Clostridium/crecimiento & desarrollo , Conservación de Alimentos/métodos , Alimentos en Conserva/microbiología , Cloruro de Sodio/farmacología , Esporas Bacterianas/crecimiento & desarrollo , Clostridium/efectos de los fármacos , Clostridium botulinum/efectos de los fármacos , Clostridium botulinum/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Conservación de Alimentos/instrumentación , Calor , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Cloruro de Sodio/análisis
6.
Food Microbiol ; 95: 103690, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33397631

RESUMEN

Spores from 21 strains from different genera were heat-treated and stored in different sets of process conditions (4 temperatures and 3 pH levels) defined to prevent growth. In these conditions, spores surviving the heat treatment progressively lost viability during storage. Different inactivation curve shapes (linear, shoulder and tailing) and different sensitivities to storage were observed. B. coagulans showed the fastest inactivation kinetics, with more than 4-log reduction of spore population within 24 h after heating and G. stearothermophilus displayed slower inactivation kinetics, whereas all the anaerobic strains studied (M. thermoacetica and Thermoanaerobacterium spp.) proved resistant to storage conditions, with no destruction detected during 90 days in most cases. Inactivation rates were relatively unaffected by sub-lethal pH but sharply accelerated by temperature: Inactivation became faster as temperature increased (in the 8 °C-55 °C temperature range), with growth blocked by low pH in sub-lethal temperatures. There were changes in surviving spore numbers after the heat-treatment phase. This has implications and applications in canned food industries, as the probability of a retorted sample testing as non-stable, meaning possible spoilage, may decrease with time. In simple terms, a batch of low-acid canned food that tests as non-shelf-stable after an incubation test i.e. positive growth conditions, may later become negative if stored at room temperature (below the minimal growth temperature for thermophilic spores), which may change the marketability of the batch.


Asunto(s)
Bacterias/crecimiento & desarrollo , Esporas Bacterianas/química , Bacterias/química , Calor , Concentración de Iones de Hidrógeno , Cinética , Viabilidad Microbiana , Esporas Bacterianas/crecimiento & desarrollo
7.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30902849

RESUMEN

Spore-forming bacteria are natural contaminants of food raw materials, and sporulation can occur in many environments from farm to fork. In order to characterize and to predict spore formation over time, we developed a model that describes both the kinetics of growth and the differentiation of vegetative cells into spores. The model is based on a classical growth model and enables description of the kinetics of sporulation with the addition of three parameters specific to sporulation. Two parameters are related to the probability of each vegetative cell to commit to sporulation and to form a spore, and the last one is related to the time needed to form a spore once the cell is committed to sporulation. The goodness of fit of this growth-sporulation model was assessed using growth-sporulation kinetics at various temperatures in laboratory medium or in whey for Bacillus subtilis, Bacillus cereus, and Bacillus licheniformis The model accurately describes the kinetics in these different conditions, with a mean error lower than 0.78 log10 CFU/ml for the growth and 1.08 log10 CFU/ml for the sporulation. The biological meaning of the parameters was validated with a derivative strain of Bacillus subtilis 168 which produces green fluorescent protein at the initiation of sporulation. This model provides physiological information on the spore formation and on the temporal abilities of vegetative cells to differentiate into spores and reveals the heterogeneity of spore formation during and after growth.IMPORTANCE The growth-sporulation model describes the progressive transition from vegetative cells to spores with sporulation parameters describing the sporulation potential of each vegetative cell. Consequently, the model constitutes an interesting tool to assess the sporulation potential of a bacterial population over time with accurate parameters such as the time needed to obtain one resistant spore and the probability of sporulation. Further, this model can be used to assess these data under various environmental conditions in order to better identify the conditions favorable for sporulation regarding the time to obtain the first spore and/or the concentrations of spores which could be reached during a food process.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Esporas Bacterianas/crecimiento & desarrollo , Bacillus cereus/crecimiento & desarrollo , Bacillus licheniformis/crecimiento & desarrollo , Cinética , Modelos Biológicos
8.
Food Microbiol ; 77: 21-25, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30297052

RESUMEN

Predicting the microbial safety of food products stored in modified atmosphere packaging implies taking into account the effect of oxygen reduction on microbial growth. According to their respiratory-type, the micro-organisms are not impacted similarly by the oxygen concentration. The aim of this article was to quantify and model the oxygen effect on the growth rates of 5 bacterial species: Listeria monocytogenes and Bacillus weihenstephanensis (facultative anaerobic), Pseudomonas fluorescens (strict aerobic), Clostridium perfringens and Clostridium sporogenes (strict anaerobic). The results showed the oxygen concentration doesn't modify the behavior of both facultative anaerobic strains. The growth rate of P. fluorescens decreased with the oxygen concentration, but the effect is only noticeable when the oxygen concentration fell below 3% in the gaseous phase. Conversely, the oxygen acted as a growth inhibitor for both Clostridium species. But total inhibition is reached only for 3.26% and 6.61% respectively for C. sporogenes and C. perfringens. Two models have been fitted for both respiratory-types, the first is the Monod model considering oxygen as a substrate for growth, and the second is the classic inhibitory model based on minimal inhibitory concentration.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbiología de Alimentos , Modelos Biológicos , Oxígeno/metabolismo , Atmósfera , Bacillus/crecimiento & desarrollo , Clostridium/crecimiento & desarrollo , Clostridium perfringens/crecimiento & desarrollo , Recuento de Colonia Microbiana , Embalaje de Alimentos , Cinética , Listeria monocytogenes/crecimiento & desarrollo , Pseudomonas fluorescens/crecimiento & desarrollo
9.
Food Microbiol ; 68: 89-96, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28800830

RESUMEN

The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO2 is sparingly soluble at acid pH. However, the CO2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO3- form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP.


Asunto(s)
Dióxido de Carbono/análisis , Listeria monocytogenes/crecimiento & desarrollo , Pseudomonas fluorescens/crecimiento & desarrollo , Atmósfera , Ecosistema , Concentración de Iones de Hidrógeno , Modelos Biológicos , Temperatura
10.
Food Microbiol ; 64: 126-134, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213016

RESUMEN

Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth.


Asunto(s)
Geobacillus stearothermophilus/fisiología , Calor , Esporas Bacterianas/fisiología , Recuento de Colonia Microbiana , Geobacillus stearothermophilus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Modelos Lineales , Viabilidad Microbiana , Modelos Biológicos , Permeabilidad , Esporas Bacterianas/crecimiento & desarrollo
11.
Food Microbiol ; 56: 87-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26919821

RESUMEN

Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions.


Asunto(s)
Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Geobacillus stearothermophilus/fisiología , Calor , Esporas Bacterianas/fisiología , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Modelos Biológicos , Esporas Bacterianas/crecimiento & desarrollo , Esterilización/métodos
12.
Food Microbiol ; 55: 64-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26742617

RESUMEN

Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow.


Asunto(s)
Esporas Bacterianas/crecimiento & desarrollo , Thermoanaerobacterium/crecimiento & desarrollo , Recuento de Colonia Microbiana , Calor , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Esporas Bacterianas/química , Thermoanaerobacterium/química
13.
Food Microbiol ; 45(Pt B): 266-75, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25500392

RESUMEN

The process of dried fermented sausages is recognized to be favourable to the reduction of the Salmonella population. The objective of this study was to develop a model describing the evolution of Salmonella during the fabrication process of dried sausages and to optimize the food formulation to prevent pathogen presence at the end of the process. An experimental design was set to investigate the effects of the fermentation and drying process for several formulations, taking into account the type of starter culture, the sodium chloride concentration, the dextrose and lactose concentration on the Salmonella Typhimurium strain behaviour. A growth-inactivation model based on the gamma concept was then developed to quantify Salmonella behaviour in dynamic process conditions of temperature, pH, lactic acid and water activity. This behaviour was characterized by a first growth step, followed by an inactivation step. The Salmonella fate was well described by the model in terms of population size variation and transition from growth to inactivation. The Salmonella behaviour was influenced by the initial sugar concentration and the starter type but not by sodium chloride content. This model can be a valuable tool to design the food process and formulation to control Salmonella.


Asunto(s)
Productos de la Carne/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Animales , Fermentación , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Ácido Láctico/análisis , Productos de la Carne/análisis , Viabilidad Microbiana , Modelos Teóricos , Salmonella typhimurium/química , Porcinos , Agua/análisis
14.
Food Microbiol ; 48: 153-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25791003

RESUMEN

Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.


Asunto(s)
Geobacillus stearothermophilus/crecimiento & desarrollo , Recuento de Colonia Microbiana , Geobacillus stearothermophilus/química , Calor , Concentración de Iones de Hidrógeno , Modelos Teóricos , Esporas Bacterianas/química , Esporas Bacterianas/crecimiento & desarrollo
15.
Compr Rev Food Sci Food Saf ; 14(1): 1-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33401814

RESUMEN

Coupling gas transfer with predictive microbiology is essential to rationally design modified atmosphere packaging (MAP) strategies to ensure and guarantee food safety. Nowadays, these strategies are generally empirically built and over-sized since packaging material with high barrier properties is often chosen by default even if such a high level of protection is not systematically required. Protection strategies could be improved using rational sizing based on quantitative analysis and mathematical modeling of mass transfer. This paper aims at reviewing the current knowledge available for developing such a tool and the further research needed. First there is a special focus on oxygen (O2 ) and carbon dioxide (CO2 ) solubility and diffusivity parameters, which are absolutely indispensable to accurately model mass transfer in MAP systems. Next, the current knowledge of the effect of O2 /CO2 on the growth of microorganisms is explored with an emphasis on predictive microbiology. The last part points out the main bottlenecks and further research needed to be carried out in order to develop an efficient MAP modeling tool for food safety coupling O2 /CO2 transfer and predictive microbiology.

16.
Food Microbiol ; 33(1): 69-76, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23122503

RESUMEN

The growth rates of strains covering the seven major phylogenetic groups of Bacillus cereus sensu lato (as defined by Guinebretiere et al., 2008) at a range of temperature (7 °C-55 °C), pH (4.6-7.5) and a(w) (0.929-0.996, with 0.5%-10% NaCl as humectant) were determined. Growth rates were fitted by non-linear regression to determine the cardinal parameters T(min), T(opt), T(max), pH(min), pH(opt), a(wmin) and µ(opt). We showed that cardinal parameters reflected the differences in the temperature adaptation observed between B. cereus phylogenetic groups I to VII. The ability of growing at low pH (up to 4.3) or low a(w) (from a(w) 0.929 and up to 10% NaCl) varied among strains. The strains of groups III and VII, the most tolerant to heat, were also the most adapted to high NaCl (all strains growing at 8% NaCl) and the ones of groups I and VI the least adapted (no growth at 7% NaCl). All strains of groups II and VII were able to grow at pH 4.6, and only a few strains of group VI. Phenotypic differences between the two psychrotrophic groups II and VI were revealed by contrasted acid and salt tolerance. The cardinal values determined in this work were validated by comparing with cardinal parameters of a panel of strains published elsewhere and with predictions of growth in a range of foods.


Asunto(s)
Bacillus cereus/clasificación , Bacillus cereus/crecimiento & desarrollo , Filogenia , Bacillus cereus/química , Bacillus cereus/metabolismo , Microbiología Ambiental , Microbiología de Alimentos , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Concentración de Iones de Hidrógeno , Cinética , Cloruro de Sodio/metabolismo , Temperatura , Agua/metabolismo
17.
Food Microbiol ; 30(1): 29-36, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22265280

RESUMEN

Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry.


Asunto(s)
Bacillus/crecimiento & desarrollo , Microbiología de Alimentos/métodos , Calor , Esporas Bacterianas/crecimiento & desarrollo , Bacillus/fisiología , Frío , Recuento de Colonia Microbiana , Concentración de Iones de Hidrógeno , Modelos Biológicos
18.
Food Microbiol ; 32(1): 79-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22850377

RESUMEN

Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate.


Asunto(s)
Bacillus/crecimiento & desarrollo , Esporas Bacterianas/crecimiento & desarrollo , Bacillus/química , Bacillus/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo , Temperatura , Agua/análisis , Agua/metabolismo
19.
Food Microbiol ; 28(4): 685-93, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21511128

RESUMEN

A preliminary step in microbial risk assessment in foods is the gathering of experimental data. In the framework of the Sym'Previus project, we have designed a complete data integration system opened on the Web which allows a local database to be complemented by data extracted from the Web and annotated using a domain ontology. We focus on the Web data tables as they contain, in general, a synthesis of data published in the documents. We propose in this paper a flexible querying system using the domain ontology to scan simultaneously local and Web data, this in order to feed the predictive modeling tools available on the Sym'Previus platform. Special attention is paid on the way fuzzy annotations associated with Web data are taken into account in the querying process, which is an important and original contribution of the proposed system.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbiología de Alimentos/métodos , Internet , Modelos Biológicos , Medición de Riesgo/métodos
20.
Food Microbiol ; 28(4): 746-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21511135

RESUMEN

The assessment of the evolution of micro-organisms naturally contaminating food must take into account the variability of biological factors, food characteristics and storage conditions. A research project involving eight French laboratories was conducted to quantify the variability of growth parameters of Listeria monocytogenes obtained by challenge testing in five food products. The residual variability corresponded to a coefficient of variation (CV) of approximately 20% for the growth rate (µ(max)) and 130% for the parameter K = µ(max) × lag. The between-batch and between-manufacturer variability of µ(max) was very dependent on the food tested and mean CV of approximately 20 and 35% were observed for these two sources of variability, respectively. The initial physiological state variability led to a CV of 100% for the parameter K. It appeared that repeating a limited number of three challenge tests with three different batches (or manufacturers) and with different initial physiological states seems often necessary and adequate to accurately assess the variability of the behavior of L. monocytogenes in a specific food produced by a given manufacturer (or for a more general food designation).


Asunto(s)
Productos Pesqueros/microbiología , Microbiología de Alimentos/métodos , Listeria monocytogenes/crecimiento & desarrollo , Productos de la Carne/microbiología , Modelos Biológicos , Productos Avícolas/microbiología , Animales , Pollos , Recuento de Colonia Microbiana , Peces , Proyectos de Investigación , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA