Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562699

RESUMEN

Representations of continuous variables are crucial to create internal models of the external world. A prevailing model of how the brain maintains these representations is given by continuous bump attractor networks (CBANs) in a broad range of brain functions across different areas, such as spatial navigation in hippocampal/entorhinal circuits and working memory in prefrontal cortex. Through recurrent connections, a CBAN maintains a persistent activity bump, whose peak location can vary along a neural space, corresponding to different values of a continuous variable. To track the value of a continuous variable changing over time, a CBAN updates the location of its activity bump based on inputs that encode the changes in the continuous variable (e.g., movement velocity in the case of spatial navigation)-a process akin to mathematical integration. This integration process is not perfect and accumulates error over time. For error correction, CBANs can use additional inputs providing ground-truth information about the continuous variable's correct value (e.g., visual landmarks for spatial navigation). These inputs enable the network dynamics to automatically correct any representation error. Recent experimental work on hippocampal place cells has shown that, beyond correcting errors, ground-truth inputs also fine-tune the gain of the integration process, a crucial factor that links the change in the continuous variable to the updating of the activity bump's location. However, existing CBAN models lack this plasticity, offering no insights into the neural mechanisms and representations involved in the recalibration of the integration gain. In this paper, we explore this gap by using a ring attractor network, a specific type of CBAN, to model the experimental conditions that demonstrated gain recalibration in hippocampal place cells. Our analysis reveals the necessary conditions for neural mechanisms behind gain recalibration within a CBAN. Unlike error correction, which occurs through network dynamics based on ground-truth inputs, gain recalibration requires an additional neural signal that explicitly encodes the error in the network's representation via a rate code. Finally, we propose a modified ring attractor network as an example CBAN model that verifies our theoretical findings. Combining an error-rate code with Hebbian synaptic plasticity, this model achieves recalibration of integration gain in a CBAN, ensuring accurate representation for continuous variables.

2.
Res Sq ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699376

RESUMEN

Representations of continuous variables are crucial to create internal models of the external world. A prevailing model of how the brain maintains these representations is given by continuous bump attractor networks (CBANs) in a broad range of brain functions across different areas, such as spatial navigation in hippocampal/entorhinal circuits and working memory in prefrontal cortex. Through recurrent connections, a CBAN maintains a persistent activity bump, whose peak location can vary along a neural space, corresponding to different values of a continuous variable. To track the value of a continuous variable changing over time, a CBAN updates the location of its activity bump based on inputs that encode the changes in the continuous variable (e.g., movement velocity in the case of spatial navigation)-a process akin to mathematical integration. This integration process is not perfect and accumulates error over time. For error correction, CBANs can use additional inputs providing ground-truth information about the continuous variable's correct value (e.g., visual landmarks for spatial navigation). These inputs enable the network dynamics to automatically correct any representation error. Recent experimental work on hippocampal place cells has shown that, beyond correcting errors, ground-truth inputs also fine-tune the gain of the integration process, a crucial factor that links the change in the continuous variable to the updating of the activity bump's location. However, existing CBAN models lack this plasticity, offering no insights into the neural mechanisms and representations involved in the recalibration of the integration gain. In this paper, we explore this gap by using a ring attractor network, a specific type of CBAN, to model the experimental conditions that demonstrated gain recalibration in hippocampal place cells. Our analysis reveals the necessary conditions for neural mechanisms behind gain recalibration within a CBAN. Unlike error correction, which occurs through network dynamics based on ground-truth inputs, gain recalibration requires an additional neural signal that explicitly encodes the error in the network's representation via a rate code. Finally, we propose a modified ring attractor network as an example CBAN model that verifies our theoretical findings. Combining an error-rate code with Hebbian synaptic plasticity, this model achieves recalibration of integration gain in a CBAN, ensuring accurate representation for continuous variables.

3.
Curr Biol ; 34(10): 2118-2131.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692275

RESUMEN

Humans and other animals can readily learn to compensate for changes in the dynamics of movement. Such changes can result from an injury or changes in the weight of carried objects. These changes in dynamics can lead not only to reduced performance but also to dramatic instabilities. We evaluated the impacts of compensatory changes in control policies in relation to stability and robustness in Eigenmannia virescens, a species of weakly electric fish. We discovered that these fish retune their sensorimotor control system in response to experimentally generated destabilizing dynamics. Specifically, we used an augmented reality system to manipulate sensory feedback during an image stabilization task in which a fish maintained its position within a refuge. The augmented reality system measured the fish's movements in real time. These movements were passed through a high-pass filter and multiplied by a gain factor before being fed back to the refuge motion. We adjusted the gain factor to gradually destabilize the fish's sensorimotor loop. The fish retuned their sensorimotor control system to compensate for the experimentally induced destabilizing dynamics. This retuning was partially maintained when the augmented reality feedback was abruptly removed. The compensatory changes in sensorimotor control improved tracking performance as well as control-theoretic measures of robustness, including reduced sensitivity to disturbances and improved phase margins.


Asunto(s)
Adaptación Fisiológica , Retroalimentación Sensorial , Animales , Retroalimentación Sensorial/fisiología , Gymnotiformes/fisiología , Pez Eléctrico/fisiología
4.
Integr Comp Biol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090982

RESUMEN

Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: 1) compensation to appendage loss and 2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.

5.
Nat Neurosci ; 27(8): 1599-1608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937582

RESUMEN

Hippocampal place cells are influenced by both self-motion (idiothetic) signals and external sensory landmarks as an animal navigates its environment. To continuously update a position signal on an internal 'cognitive map', the hippocampal system integrates self-motion signals over time, a process that relies on a finely calibrated path integration gain that relates movement in physical space to movement on the cognitive map. It is unclear whether idiothetic cues alone, such as optic flow, exert sufficient influence on the cognitive map to enable recalibration of path integration, or if polarizing position information provided by landmarks is essential for this recalibration. Here, we demonstrate both recalibration of path integration gain and systematic control of place fields by pure optic flow information in freely moving rats. These findings demonstrate that the brain continuously rebalances the influence of conflicting idiothetic cues to fine-tune the neural dynamics of path integration, and that this recalibration process does not require a top-down, unambiguous position signal from landmarks.


Asunto(s)
Flujo Optico , Células de Lugar , Ratas Long-Evans , Animales , Flujo Optico/fisiología , Ratas , Masculino , Células de Lugar/fisiología , Señales (Psicología) , Percepción Espacial/fisiología , Hipocampo/fisiología , Hipocampo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA