Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(5): 1010-1017, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38186335

RESUMEN

Piperidines are one of the most widely used building blocks in the synthesis of pharmaceutical and agrochemical compounds. The hydrogenation of pyridines is a convenient method to synthesise such compounds as it only requires reactant, catalyst, and a hydrogen source. However, this reaction still remains difficult for the reduction of functionalised and multi-substituted pyridines. Here we report the use of a stable, commercially available rhodium compound, Rh2O3, for the reduction of various unprotected pyridines. The reaction only requires mild conditions, and the substrate scope is broad, making it practically useful.

2.
J Org Chem ; 88(9): 5275-5284, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067823

RESUMEN

The copper-catalyzed racemization of a complex, quaternary center of a key intermediate on route to lanabecestat has been identified. Optimization and mechanistic understanding were achieved through the use of an efficient, combined kinetic-multiple linear regression approach to experimental design and modeling. The use of a definitive screening design with mechanistically relevant factors and a mixture of fitted kinetic descriptors and empirical measurements facilitated the generation of a model that accurately predicted complex reaction time course behavior. The synergistic model was used to minimize the formation of dimer byproducts, determine optimal conditions for batch operation, and highlight superheated conditions that could be accessed in flow, leading to a further increase in yield which was predicted by the original model.

3.
J Org Chem ; 84(8): 4735-4747, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30352146

RESUMEN

A multidisciplinary approach covering synthetic, physical, and analytical chemistry, high-throughput experimentation and experimental design, process engineering, and solid-state chemistry is used to develop a large-scale (kilomole) Suzuki-Miyaura process. Working against clear criteria and targets, a full process investigation and optimization package is described highlighting how and why key decisions are made in the development of large-scale pharmaceutical processes.


Asunto(s)
Diseño de Fármacos , Industria Farmacéutica , Pirazinas/síntesis química , Triazinas/síntesis química , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Pirazinas/química , Triazinas/química
4.
J Am Chem Soc ; 134(40): 16805-16, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23016922

RESUMEN

The kinetics of the metal-free hydrogen transfer from amine-borane Me(2)NH·BH(3) to aminoborane iPr(2)N═BH(2), yielding iPr(2)NH·BH(3) and cyclodiborazane [Me(2)N-BH(2)](2) via transient Me(2)N═BH(2), have been investigated in detail, with further information derived from isotopic labeling and DFT computations. The approach of the system toward equilibrium was monitored in both directions by (11)B{(1)H} NMR spectroscopy in a range of solvents and at variable temperatures in THF. Simulation of the resulting temporal-concentration data according to a simple two-stage hydrogen transfer/dimerization process yielded the rate constants and thermodynamic parameters attending both equilibria. At ambient temperature, the bimolecular hydrogen transfer is slightly endergonic in the forward direction (ΔG(1)°((295)) = 10 ± 7 kJ·mol(-1); ΔG(1)(‡)((295)) = 91 ± 5 kJ·mol(-1)), with the overall equilibrium being driven forward by the subsequent exergonic dimerization of the aminoborane Me(2)N═BH(2) (ΔG(2)°((295)) = -28 ± 14 kJ·mol(-1)). Systematic deuterium labeling of the NH and BH moieties in Me(2)NH·BH(3) and iPr(2)N═BH(2) allowed the kinetic isotope effects (KIEs) attending the hydrogen transfer to be determined. A small inverse KIE at boron (k(H)/k(D) = 0.9 ± 0.2) and a large normal KIE at nitrogen (k(H)/k(D) = 6.7 ± 0.9) are consistent with either a pre-equilibrium involving a B-to-B hydrogen transfer or a concerted but asynchronous hydrogen transfer via a cyclic six-membered transition state in which the B-to-B hydrogen transfer is highly advanced. DFT calculations are fully consistent with a concerted but asynchronous process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA