Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Biol Sci ; 288(1953): 20210863, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157875

RESUMEN

The ocean biological pump is the mechanism by which carbon and nutrients are transported to depth. As such, the biological pump is critical in the partitioning of carbon dioxide between the ocean and atmosphere, and the rate at which that carbon can be sequestered through burial in marine sediments. How the structure and function of planktic ecosystems in the ocean govern the strength and efficiency of the biological pump and its resilience to disruption are poorly understood. The aftermath of the impact at the Cretaceous/Palaeogene (K/Pg) boundary provides an ideal opportunity to address these questions as both the biological pump and marine plankton size and diversity were fundamentally disrupted. The excellent fossil record of planktic foraminifera as indicators of pelagic-biotic recovery combined with carbon isotope records tracing biological pump behaviour, show that the recovery of ecological traits (diversity, size and photosymbiosis) occurred much later (approx. 4.3 Ma) than biological pump recovery (approx. 1.8 Ma). We interpret this decoupling of diversity and the biological pump as an indication that ecosystem function had sufficiently recovered to drive an effective biological pump, at least regionally in the South Atlantic.


Asunto(s)
Ecosistema , Foraminíferos , Isótopos de Carbono/análisis , Extinción Biológica , Fósiles , Océanos y Mares , Plancton
2.
Nature ; 524(7563): 84-7, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26245581

RESUMEN

Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Carbono/análisis , Regiones Árticas , Atmósfera/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Material Particulado/análisis , Material Particulado/química , Ríos/química , Silicatos/análisis , Suelo/química , Factores de Tiempo , Clima Tropical
3.
Sci Rep ; 13(1): 17416, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833337

RESUMEN

Central Arctic, interglacial intervals have traditionally been associated with diverse and intense bioturbation, and abundant foraminifera, interpreted as indicating relatively low sea-ice concentrations and productive surface waters, while glacial intervals, typically barren, support the inverse. In this respect, the Yermak Plateau is anomalous. Biomarker studies suggest that glacial intervals were characterized by comparatively open water, while interglacials are marked by severe sea-ice conditions. Here we study downcore Ethological Ichno Quotient (EIQ) variations in trace fossils and bioturbation to test the hypothesis that different ethological classes vary in accordance with late Pleistocene changes in sea-ice extent, with deposit feeders increasing during reduced sea-ice cover and chemosymbiotic traces increasing during periods of thick perennial sea-ice conditions. Our results generally demonstrate that the abundance of traces like Planolites, Scolicia, and burrows produced by deposit feeders increase during episodes of seasonal sea-ice cover. In contrast, intervals with more severe sea-ice conditions are characterized by chemosymbiotic traces such as Chondrites and Trichichnus/Mycellia, suggesting lower food delivery and poorly ventilated bottom water conditions. The study thus confirms previous reconstructions of sea-ice conditions on the Yermak Plateau during interglacials, demonstrating that bioturbation variation provides insights into bentho-pelagic coupling under variable sea ice regimes in the Arctic Ocean.


Asunto(s)
Cubierta de Hielo , Agua , Regiones Árticas
4.
Nature ; 433(7021): 53-7, 2005 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-15635407

RESUMEN

The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.


Asunto(s)
Carbonato de Calcio/metabolismo , Clima Frío , Cubierta de Hielo , Agua de Mar/química , Silicatos de Aluminio/análisis , Regiones Antárticas , Isótopos de Carbono , Arcilla , Frío , Planeta Tierra , Sedimentos Geológicos/química , Historia Antigua , Concentración de Iones de Hidrógeno , Isótopos de Oxígeno , Océano Pacífico , Estaciones del Año , Factores de Tiempo , Clima Tropical
6.
Paleoceanogr Paleoclimatol ; 35(10): e2020PA003932, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134852

RESUMEN

Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56-34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long-term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low-latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1-2‰ and 2-4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.

7.
Nat Commun ; 11(1): 5249, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067447

RESUMEN

The first major build-up of Antarctic glaciation occurred in two consecutive stages across the Eocene-Oligocene transition (EOT): the EOT-1 cooling event at ~34.1-33.9 Ma and the Oi-1 glaciation event at ~33.8-33.6 Ma. Detailed orbital-scale terrestrial environmental responses to these events remain poorly known. Here we present magnetic and geochemical climate records from the northeastern Tibetan Plateau margin that are dated precisely from ~35.5 to 31 Ma by combined magneto- and astro-chronology. These records suggest a hydroclimate transition at ~33.7 Ma from eccentricity dominated cycles to oscillations paced by a combination of eccentricity, obliquity, and precession, and confirm that major Asian aridification and cooling occurred at Oi-1. We conclude that this terrestrial orbital response transition coincided with a similar transition in the marine benthic δ18O record for global ice volume and deep-sea temperature variations. The dramatic reorganization of the Asian climate system coincident with Oi-1 was, thus, a response to coeval atmospheric CO2 decline and continental-scale Antarctic glaciation.

8.
Nat Commun ; 10(1): 3797, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439843

RESUMEN

The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, marks a period of major global cooling and inception of the Antarctic ice sheet. Proxies of deep circulation suggest a contemporaneous onset or strengthening of the Atlantic meridional overturning circulation (AMOC). Proxy evidence of gradual salinification of the North Atlantic and tectonically driven isolation of the Arctic suggest that closing the Arctic-Atlantic gateway could have triggered the AMOC at the EOT. We demonstrate this trigger of the AMOC using a new paleoclimate model with late Eocene boundary conditions. The control simulation reproduces Eocene observations of low Arctic salinities. Subsequent closure of the Arctic-Atlantic gateway triggers the AMOC by blocking freshwater inflow from the Arctic. Salt advection feedbacks then lead to cessation of overturning in the North Pacific. These circulation changes imply major warming of the North Atlantic Ocean, and simultaneous cooling of the North Pacific, but no interhemispheric change in temperatures.

9.
Nat Commun ; 7: 10365, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26778247

RESUMEN

The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

10.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20130099, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24043871

RESUMEN

Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

11.
Biol Rev Camb Philos Soc ; 86(4): 900-27, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21492379

RESUMEN

We present a complete phylogeny of macroperforate planktonic foraminifer species of the Cenozoic Era (∼65 million years ago to present). The phylogeny is developed from a large body of palaeontological work that details the evolutionary relationships and stratigraphic (time) distributions of species-level taxa identified from morphology ('morphospecies'). Morphospecies are assigned to morphogroups and ecogroups depending on test morphology and inferred habitat, respectively. Because gradual evolution is well documented in this clade, we have identified many instances of morphospecies intergrading over time, allowing us to eliminate 'pseudospeciation' and 'pseudoextinction' from the record and thereby permit the construction of a more natural phylogeny based on inferred biological lineages. Each cladogenetic event is determined as either budding or bifurcating depending on the pattern of morphological change at the time of branching. This lineage phylogeny provides palaeontologically calibrated ages for each divergence that are entirely independent of molecular data. The tree provides a model system for macroevolutionary studies in the fossil record addressing questions of speciation, extinction, and rates and patterns of evolution.


Asunto(s)
Foraminíferos/genética , Fósiles , Filogenia , Animales , Biodiversidad , Cambio Climático , Extinción Biológica , Especiación Genética , Océanos y Mares , Plancton , Especificidad de la Especie
12.
Science ; 314(5807): 1894-8, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17185595

RESUMEN

A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.


Asunto(s)
Carbono , Clima , Cubierta de Hielo , Animales , Biomasa , Carbonato de Calcio/análisis , Isótopos de Carbono/análisis , Sedimentos Geológicos/química , Isótopos de Oxígeno/análisis , Océano Pacífico , Plancton , Luz Solar , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA