Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(6): 740-749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36797401

RESUMEN

Design of biomolecules that perform two or more distinct functions in response to light remains challenging. Here, we have introduced concurrent photoactivity and photoreactivity into an epidermal growth factor receptor (EGFR)-targeting antibody fragment, 7D12. This was achieved by site-specific incorporation of photocaged tyrosine (pcY) for photoactivity and p-benzoyl-ʟ-phenylalanine (Bpa) for photoreactivity into 7D12. We identified a position for installing Bpa in 7D12 that has minimal effect on 7D12-EGFR binding affinity in the absence of light. Upon exposure to 365-nm light, this Bpa-containing 7D12 mutant forms a covalent bond with EGFR in an antigen-specific manner. We then developed a method for site-specific incorporation of pcY and Bpa at two distinct sites in 7D12. Finally, we demonstrated that in the absence of light, this pcY- and Bpa-containing mutant of 7D12 does not bind to EGFR, but irradiation with 365-nm light activates (1) specific binding and (2) covalent bond formation with EGFR.


Asunto(s)
Receptores ErbB , Fragmentos de Inmunoglobulinas , Receptores ErbB/genética , Unión Proteica , Anticuerpos , Antígenos
2.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38050998

RESUMEN

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Asunto(s)
Neoplasias , Nitrosaminas , Tabaco sin Humo , Humanos , Carcinógenos/toxicidad , Mutágenos , Neoplasias/inducido químicamente , Nitratos , Nitritos , Nitrosaminas/toxicidad , Nitrosaminas/química , Nitrosaminas/metabolismo , Tabaco sin Humo/toxicidad
3.
J Am Chem Soc ; 144(16): 7129-7145, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416044

RESUMEN

Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 µM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.


Asunto(s)
Proteínas de Escherichia coli , Estrés Nitrosativo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Hierro/química , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Nitritos/metabolismo
4.
J Am Chem Soc ; 144(40): 18296-18304, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173876

RESUMEN

Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.


Asunto(s)
Cisteína , Hemo , Proteínas Bacterianas/química , Catálisis , Cisteína/metabolismo , Citocromos/química , Hemo/química , Ligandos , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/metabolismo , Sulfitos , Azufre/metabolismo , Tiosulfatos/metabolismo
5.
J Biol Chem ; 295(28): 9752-9765, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32303639

RESUMEN

The bacterial protein WhiD belongs to the Wbl family of iron-sulfur [Fe-S] proteins present only in the actinomycetes. In Streptomyces coelicolor, it is required for the late stages of sporulation, but precisely how it functions is unknown. Here, we report results from in vitro and in vivo experiments with WhiD from Streptomyces venezuelae (SvWhiD), which differs from S. coelicolor WhiD (ScWhiD) only at the C terminus. We observed that, like ScWhiD and other Wbl proteins, SvWhiD binds a [4Fe-4S] cluster that is moderately sensitive to O2 and highly sensitive to nitric oxide (NO). However, although all previous studies have reported that Wbl proteins are monomers, we found that SvWhiD exists in a monomer-dimer equilibrium associated with its unusual C-terminal extension. Several Wbl proteins of Mycobacterium tuberculosis are known to interact with its principal sigma factor SigA. Using bacterial two-hybrid, gel filtration, and MS analyses, we demonstrate that SvWhiD interacts with domain 4 of the principal sigma factor of Streptomyces, σHrdB (σHrdB4). Using MS, we determined the dissociation constant (Kd ) for the SvWhiD-σHrdB4 complex as ∼0.7 µm, consistent with a relatively tight binding interaction. We found that complex formation was cluster dependent and that a reaction with NO, which was complete at 8-10 NO molecules per cluster, resulted in dissociation into the separate proteins. The SvWhiD [4Fe-4S] cluster was significantly less sensitive to reaction with O2 and NO when SvWhiD was bound to σHrdB4, consistent with protection of the cluster in the complex.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Factor sigma , Streptomyces , Factores de Transcripción , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Factor sigma/química , Factor sigma/metabolismo , Streptomyces/química , Streptomyces/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
J Am Chem Soc ; 142(11): 5104-5116, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32078310

RESUMEN

The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Electrones , Proteínas Hierro-Azufre/química , Protones , Factores de Transcripción/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histidina/química , Histidina/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Simulación de Dinámica Molecular , Mutación , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Streptomyces/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(16): E3215-E3223, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373574

RESUMEN

The iron-sulfur cluster containing protein Fumarate and Nitrate Reduction (FNR) is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high-affinity DNA binding. Here, we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a [3Fe-3S] cluster and persulfide-coordinated [2Fe-2S] clusters [[2Fe-2S](S) n , where n = 1 or 2]. Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion and not as a subsequent, secondary reaction to generate [2Fe-2S](S) n species. This methodology shows great potential for broad application to studies of protein cofactor-small molecule interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fumaratos/química , Proteínas Hierro-Azufre/química , Hierro/química , Nitratos/química , Oxígeno/farmacología , Sulfuros/química , Proteínas de Escherichia coli/metabolismo , Fumaratos/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Cinética , Modelos Moleculares , Nitratos/metabolismo , Oxidación-Reducción , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Sulfuros/metabolismo
8.
J Am Chem Soc ; 141(6): 2367-2375, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30657661

RESUMEN

The recently discovered Rrf2 family transcriptional regulator RsrR coordinates a [2Fe-2S] cluster. Remarkably, binding of the protein to RsrR-regulated promoter DNA sequences is switched on and off through the facile cycling of the [2Fe-2S] cluster between +2 and +1 states. Here, we report high resolution crystal structures of the RsrR dimer, revealing that the [2Fe-2S] cluster is asymmetrically coordinated across the RsrR monomer-monomer interface by two Cys residues from one subunit and His and Glu residues from the other. To our knowledge, this is the first example of a protein bound [Fe-S] cluster with three different amino acid side chains as ligands, and of Glu acting as ligand to a [2Fe-2S] cluster. Analyses of RsrR structures revealed a conformational change, centered on Trp9, which results in a significant shift in the DNA-binding helix-turn-helix region.


Asunto(s)
Proteínas Bacterianas/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Factores de Transcripción/metabolismo
9.
Chemistry ; 25(14): 3675-3684, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30600851

RESUMEN

Nitric oxide (NO) can function as both a cytotoxin and a signalling molecule. In both cases, reaction with iron-sulfur (Fe-S) cluster proteins plays an important role because Fe-S clusters are reactive towards NO and so are a primary site of general NO-induced damage (toxicity). This sensitivity to nitrosylation is harnessed in the growing group of regulatory proteins that function in sensing of NO via an Fe-S cluster. Although information about the products of cluster nitrosylation is now emerging, detection and identification of intermediates remains a major challenge, due to their transient nature and the difficulty in distinguishing spectroscopically similar iron-NO species. Here we report studies of the NO-sensing Fe-S cluster regulators NsrR and WhiD using non-denaturing mass spectrometry, in which non-covalent interactions between the protein and Fe/S/NO species are preserved. The data provide remarkable insight into the nitrosylation reactions, permitting identification, for the first time, of protein-bound mono-, di- and tetranitrosyl [4Fe-4S] cluster complexes ([4Fe-4S](NO), [4Fe-4S])(NO)2 and [4Fe-4S](NO)4 ) as intermediates along pathways to formation of product Roussin's red ester (RRE) and Roussin's black salt (RBS)-like species. The data allow the nitrosylation mechanisms of NsrR and WhiD to be elucidated and clearly distinguished.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Streptomyces coelicolor/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Streptomyces coelicolor/química , Factores de Transcripción/química
10.
Nucleic Acids Res ; 45(11): 6600-6612, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28482027

RESUMEN

Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Quinasas/genética , Factores de Transcripción/fisiología , Tuberculosis/microbiología , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Proteínas de Unión al ADN , Escherichia coli , Femenino , Regulación Bacteriana de la Expresión Génica , Macrófagos/microbiología , Ratones Endogámicos BALB C , Mycobacterium smegmatis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Oxidación-Reducción , Unión Proteica , Proteínas Quinasas/metabolismo , Transcripción Genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Plant J ; 89(3): 590-600, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27801963

RESUMEN

Proteins of the cytosolic pathway for iron-sulphur (FeS) cluster assembly are conserved, except that plants lack a gene for CFD1 (Cytosolic FeS cluster Deficient 1). This poses the question of how NBP35 (Nucleotide-Binding Protein 35 kDa), the heteromeric partner of CFD1 in metazoa, functions on its own in plants. Firstly, we created viable mutant alleles of NBP35 in Arabidopsis to overcome embryo lethality of previously reported knockout mutations. RNAi knockdown lines with less than 30% NBP35 protein surprisingly showed no developmental or biochemical differences to wild-type. Substitution of Cys14 to Ala, which destabilized the N-terminal Fe4 S4 cluster in vitro, caused mild growth defects and a significant decrease in the activity of cytosolic FeS enzymes such as aconitase and aldehyde oxidases. The DNA glycosylase ROS1 was only partially decreased in activity and xanthine dehydrogenase not at all. Plants with strongly depleted NBP35 protein in combination with Cys14 to Ala substitution had distorted leaf development and decreased FeS enzyme activities. To find protein interaction partners of NBP35, a yeast-two-hybrid screen was carried out that identified NBP35 and DRE2 (Derepressed for Ribosomal protein S14 Expression). NBP35 is known to form a dimer, and DRE2 acts upstream in the cytosolic FeS protein assembly pathway. The NBP35-DRE2 interaction was not disrupted by Cys14 to Ala substitution. Our results show that NBP35 has a function in the maturation of FeS proteins that is conserved in plants, and is closely allied to the function of DRE2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Hierro-Azufre/genética , Mutación Missense , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Interferencia de ARN , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 291(16): 8663-72, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26887943

RESUMEN

NsrR is an iron-sulfur cluster protein that regulates the nitric oxide (NO) stress response of many bacteria. NsrR from Streptomyces coelicolor regulates its own expression and that of only two other genes, hmpA1 and hmpA2, which encode HmpA enzymes predicted to detoxify NO. NsrR binds promoter DNA with high affinity only when coordinating a [4Fe-4S] cluster. Here we show that reaction of [4Fe-4S] NsrR with NO affects DNA binding differently depending on the gene promoter. Binding to the hmpA2 promoter was abolished at ∼2 NO per cluster, although for the hmpA1 and nsrR promoters, ∼4 and ∼8 NO molecules, respectively, were required to abolish DNA binding. Spectroscopic and kinetic studies of the NO reaction revealed a rapid, multi-phase, non-concerted process involving up to 8-10 NO molecules per cluster, leading to the formation of several iron-nitrosyl species. A distinct intermediate was observed at ∼2 NO per cluster, along with two further intermediates at ∼4 and ∼6 NO. The NsrR nitrosylation reaction was not significantly affected by DNA binding. These results show that NsrR regulates different promoters in response to different concentrations of NO. Spectroscopic evidence indicates that this is achieved by different NO-FeS complexes.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas Hierro-Azufre/metabolismo , Óxido Nítrico/metabolismo , Regiones Promotoras Genéticas/fisiología , Streptomyces coelicolor/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Proteínas Hierro-Azufre/genética , Streptomyces coelicolor/genética , Factores de Transcripción/genética
13.
J Biol Chem ; 290(27): 16812-23, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25971977

RESUMEN

The Escherichia coli fumarate-nitrate reduction regulator (FNR) protein is the paradigm for bacterial O2-sensing transcription factors. However, unlike E. coli, some bacterial species possess multiple FNR proteins that presumably have evolved to fulfill distinct roles. Here, three FNR proteins (ANR, PP_3233, and PP_3287) from a single bacterial species, Pseudomonas putida KT2440, have been analyzed. Under anaerobic conditions, all three proteins had spectral properties resembling those of [4Fe-4S] proteins. The reactivity of the ANR [4Fe-4S] cluster with O2 was similar to that of E. coli FNR, and during conversion to the apo-protein, via a [2Fe-2S] intermediate, cluster sulfur was retained. Like ANR, reconstituted PP_3233 and PP_3287 were converted to [2Fe-2S] forms when exposed to O2, but their [4Fe-4S] clusters reacted more slowly. Transcription from an FNR-dependent promoter with a consensus FNR-binding site in P. putida and E. coli strains expressing only one FNR protein was consistent with the in vitro responses to O2. Taken together, the experimental results suggest that the local environments of the iron-sulfur clusters in the different P. putida FNR proteins influence their reactivity with O2, such that ANR resembles E. coli FNR and is highly responsive to low concentrations of O2, whereas PP_3233 and PP_3287 have evolved to be less sensitive to O2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxígeno/metabolismo , Pseudomonas putida/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Familia de Multigenes , Pseudomonas putida/genética , Factores de Transcripción/genética
14.
J Biol Chem ; 290(20): 12689-704, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25771538

RESUMEN

The Rrf2 family transcription factor NsrR controls expression of genes in a wide range of bacteria in response to nitric oxide (NO). The precise form of the NO-sensing module of NsrR is the subject of controversy because NsrR proteins containing either [2Fe-2S] or [4Fe-4S] clusters have been observed previously. Optical, Mössbauer, resonance Raman spectroscopies and native mass spectrometry demonstrate that Streptomyces coelicolor NsrR (ScNsrR), previously reported to contain a [2Fe-2S] cluster, can be isolated containing a [4Fe-4S] cluster. ChIP-seq experiments indicated that the ScNsrR regulon is small, consisting of only hmpA1, hmpA2, and nsrR itself. The hmpA genes encode NO-detoxifying flavohemoglobins, indicating that ScNsrR has a specialized regulatory function focused on NO detoxification and is not a global regulator like some NsrR orthologues. EMSAs and DNase I footprinting showed that the [4Fe-4S] form of ScNsrR binds specifically and tightly to an 11-bp inverted repeat sequence in the promoter regions of the identified target genes and that DNA binding is abolished following reaction with NO. Resonance Raman data were consistent with cluster coordination by three Cys residues and one oxygen-containing residue, and analysis of ScNsrR variants suggested that highly conserved Glu-85 may be the fourth ligand. Finally, we demonstrate that some low molecular weight thiols, but importantly not physiologically relevant thiols, such as cysteine and an analogue of mycothiol, bind weakly to the [4Fe-4S] cluster, and exposure of this bound form to O2 results in cluster conversion to the [2Fe-2S] form, which does not bind to DNA. These data help to account for the observation of [2Fe-2S] forms of NsrR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Hierro-Azufre/metabolismo , Óxido Nítrico/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas Hierro-Azufre/genética , Regiones Promotoras Genéticas/fisiología , Regulón/fisiología , Streptomyces coelicolor/genética
15.
J Biol Inorg Chem ; 21(1): 71-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26790880

RESUMEN

In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster-containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~sixfold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers.


Asunto(s)
Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Paracoccus denitrificans/metabolismo , Escherichia coli/genética , Cinética , Espectrofotometría Ultravioleta
16.
Angew Chem Int Ed Engl ; 55(47): 14575-14579, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27778474

RESUMEN

The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2 (NO)4 (Cys)2 ]) and Roussin's Black Salt (RBS, [Fe4 (NO)7 S3 ]. In the latter case, the absence of 32 S/34 S shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Compuestos Nitrosos/metabolismo , Hierro/química , Proteínas Hierro-Azufre/química , Conformación Molecular , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Teoría Cuántica
17.
Acc Chem Res ; 47(10): 3196-205, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25262769

RESUMEN

Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.


Asunto(s)
Técnicas Biosensibles , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Modelos Moleculares
18.
Biochem J ; 463(1): 83-92, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25019503

RESUMEN

The fumarate and nitrate reduction (FNR) regulator is the master switch for the transition between anaerobic and aerobic respiration in Escherichia coli. Reaction of dimeric [4Fe-4S] FNR with O2 results in conversion of the cluster into a [2Fe-2S] form, via a [3Fe-4S] intermediate, leading to the loss of DNA binding through dissociation of the dimer into monomers. In the present paper, we report studies of two previously identified variants of FNR, D154A and I151A, in which the form of the cluster is decoupled from the association state. In vivo studies of permanently dimeric D154A FNR show that DNA binding does not affect the rate of cluster incorporation into the apoprotein or the rate of O2-mediated cluster loss. In vitro studies show that O2-mediated cluster conversion for D154A and the permanent monomer I151A FNR is the same as in wild-type FNR, but with altered kinetics. Decoupling leads to an increase in the rate of the [3Fe-4S]1+ into [2Fe-2S]2+ conversion step, consistent with the suggestion that this step drives association state changes in the wild-type protein. We have also shown that DNA-bound FNR reacts more rapidly with O2 than FNR free in solution, implying that transcriptionally active FNR is the preferred target for reaction with O2.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Multimerización de Proteína/fisiología , Sustitución de Aminoácidos , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutación Missense , Oxígeno/química
19.
Proc Natl Acad Sci U S A ; 109(39): 15734-9, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019358

RESUMEN

Fumarate and nitrate reduction (FNR) regulatory proteins are O(2)-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions [4Fe-4S](2+)-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the [4Fe-4S](2+) cluster undergoes a rapid conversion to a [2Fe-2S](2+) cluster, resulting in a dimer-to-monomer transition and loss of site-specific DNA binding. In this work, resonance Raman and UV-visible absorption/CD spectroscopies and MS were used to characterize the interconversion between [4Fe-4S](2+) and [2Fe-2S](2+) clusters in Escherichia coli FNR. Selective (34)S labeling of the bridging sulfides in the [4Fe-4S](2+) cluster-bound form of FNR facilitated identification of resonantly enhanced Cys(32)S-(34)S stretching modes in the resonance Raman spectrum of the O(2)-exposed [2Fe-2S](2+) cluster-bound form of FNR. This result indicates O(2)-induced oxidation and retention of bridging sulfides in the form of [2Fe-2S](2+) cluster-bound cysteine persulfides. MS also demonstrates that multiple cysteine persulfides are formed on O(2) exposure of [4Fe-4S](2+)-FNR. The [4Fe-4S](2+) cluster in FNR can also be regenerated from the cysteine persulfide-coordinated [2Fe-2S](2+) cluster by anaerobic incubation with DTT and Fe(2+) ion in the absence of exogenous sulfide. Resonance Raman data indicate that this type of cluster conversion involving sulfide oxidation is not unique to FNR, because it also occurs in O(2)-exposed forms of O(2)-sensitive [4Fe-4S] clusters in radical S-adenosylmethionine enzymes. The results provide fresh insight into the molecular mechanism of O(2) sensing by FNR and iron-sulfur cluster conversion reactions in general, and suggest unique mechanisms for the assembly or repair of biological [4Fe-4S] clusters.


Asunto(s)
Cisteína/química , Proteínas de Escherichia coli/química , Compuestos Ferrosos/química , Proteínas Hierro-Azufre/química , Modelos Químicos , Oxígeno/química , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos Ferrosos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Análisis Espectral
20.
J Biol Chem ; 288(16): 11492-502, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23471974

RESUMEN

The Fumarate nitrate reduction (FNR) regulator from Escherichia coli controls expression of >300 genes in response to O2 through reaction with its [4Fe-4S] cluster cofactor. FNR is the master switch for the transition between anaerobic and aerobic respiration. In response to physiological concentrations of nitric oxide (NO), FNR also regulates genes, including the nitrate reductase (nar) operon, a major source of endogenous cellular NO, and hmp, which encodes an NO-detoxifying enzyme. Here we show that the [4Fe-4S] cluster of FNR reacts rapidly in a multiphasic reaction with eight NO molecules. Oxidation of cluster sulfide ions (S(2-)) to sulfane (S(0)) occurs, some of which remains associated with the protein as Cys persulfide. The nitrosylation products are similar to a pair of dinuclear dinitrosyl iron complexes, [Fe(I)2(NO)4(Cys)2](0), known as Roussin's red ester. A similar reactivity with NO was reported for the Wbl family of [4Fe-4S]-containing proteins found only in actinomycetes, such as Streptomyces and Mycobacteria. These results show that NO reacts via a common mechanism with [4Fe-4S] clusters in phylogenetically unrelated regulatory proteins that, although coordinated by four Cys residues, have different cluster environments. The reactivity of E. coli FNR toward NO, in addition to its sensitivity toward O2, is part of a hierarchal network that monitors, and responds to, NO, both endogenously generated and exogenously derived.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Hierro-Azufre/química , Hierro/química , Óxido Nítrico/química , Oxígeno/química , Sulfuros/química , Aerobiosis/fisiología , Anaerobiosis/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mycobacterium/química , Mycobacterium/metabolismo , Óxido Nítrico/metabolismo , Operón/fisiología , Oxígeno/metabolismo , Streptomyces/química , Streptomyces/metabolismo , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA