RESUMEN
The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.
Asunto(s)
Minas de Carbón , Contaminantes Químicos del Agua , Animales , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Invertebrados , Minería , Ríos , Contaminantes Químicos del Agua/análisisRESUMEN
This is a commentary on Brookshire et al. 26, 5404-5413 For the Northern Great Plains, Brookshire, Stoy, Currey, and Finney (Global Change Biology, 2020) analyze satellite-based reconstructions of greenness and foliar nutrition and isotopic composition from herbarium samples. Their results of greater productivity coupled with reduced N availability are part of an inflection in our understanding of the global N cycle as much of the terrestrial biosphere appears to be experiencing reduced N availability.
Asunto(s)
Ecosistema , NitrógenoRESUMEN
Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
Asunto(s)
Biodiversidad , Dieta , Herbivoria , Nematodos , Plantas , Animales , Regiones Árticas , Bison/fisiología , Clima Frío , Congelación , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos/fisiología , Mamuts/fisiología , Nematodos/clasificación , Nematodos/genética , Nematodos/aislamiento & purificación , Plantas/clasificación , Plantas/genética , Poaceae/genética , Poaceae/crecimiento & desarrollo , Suelo , Factores de Tiempo , El YukónRESUMEN
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Asunto(s)
Ecosistema , Plantas , Carácter Cuantitativo Heredable , Ambiente , Geografía , Modelos Estadísticos , Dispersión de las Plantas , Análisis EspacialRESUMEN
Human activities have doubled the pre-industrial supply of reactive nitrogen on Earth, and future rates of increase are expected to accelerate. Yet little is known about the capacity of the biosphere to buffer increased nitrogen influx. Past changes in global ecosystems following deglaciation at the end of the Pleistocene epoch provide an opportunity to understand better how nitrogen cycling in the terrestrial biosphere responded to changes in carbon cycling. We analysed published records of stable nitrogen isotopic values (δ(15)N) in sediments from 86 lakes on six continents. Here we show that the value of sedimentary δ(15)N declined from 15,000 years before present to 7,056 ± 597 years before present, a period of increasing atmospheric carbon dioxide concentrations and terrestrial carbon accumulation. Comparison of the nitrogen isotope record with concomitant carbon accumulation on land and nitrous oxide in the atmosphere suggests millennia of declining nitrogen availability in terrestrial ecosystems during the Pleistocene-Holocene transition around 11,000 years before present. In contrast, we do not observe a consistent change in global sedimentary δ(15)N values during the past 500 years, despite the potential effects of changing temperature and nitrogen influx from anthropogenic sources. We propose that the lack of a single response may indicate that modern increases in atmospheric carbon dioxide and net carbon sequestration in the biosphere have the potential to offset recent increased supplies of reactive nitrogen in some ecosystems.
Asunto(s)
Ecosistema , Ciclo del Nitrógeno , Ciclo del Carbono , Sedimentos Geológicos/química , Modelos Teóricos , Isótopos de Nitrógeno/análisisRESUMEN
The pace and degree of nutrient limitation are among the most critical uncertainties in predicting terrestrial ecosystem responses to global change. In the northeastern United States, forest growth has recently declined along with decreased soil calcium (Ca) availability, suggesting that acid rain has depleted soil Ca to the point where it may be a limiting nutrient. However, it is unknown whether the past 60 y of changes in Ca availability are strictly anthropogenic or partly a natural consequence of long-term ecosystem development. Here, we report a high-resolution millennial-scale record of Ca and 16 other elements from the sediments of Mirror Lake, a 15-ha lake in the White Mountains of New Hampshire surrounded by northern hardwood forest. We found that sedimentary Ca concentrations had been declining steadily for 900 y before regional Euro-American settlement. This Ca decline was not a result of serial episodic disturbances but instead the gradual weathering of soils and soil Ca availability. As Ca availability was declining, nitrogen availability concurrently was increasing. These data indicate that nutrient availability on base-poor, parent materials is sensitive to acidifying processes on millennial timescales. Forest harvesting and acid rain in the postsettlement period mobilized significant amounts of Ca from watershed soils, but these effects were exacerbated by the long-term pattern. Shifting nutrient limitation can potentially occur within 10,000 y of ecosystem development, which alters our assessments of the speed and trajectory of nutrient limitation in forests, and could require reformulation of global models of forest productivity.
Asunto(s)
Calcio/análisis , Bosques , Ecosistema , New EnglandAsunto(s)
Bison , Migración Animal , Animales , Ingeniería , Parques Recreativos , Estaciones del AñoRESUMEN
BACKGROUND: Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. RESULTS: 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. CONCLUSIONS: The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.
Asunto(s)
Evolución Molecular , Plastidios/genética , Poaceae/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , Filogenia , Poaceae/clasificaciónRESUMEN
Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing.
Asunto(s)
Biomasa , Cambio Climático , Poaceae/fisiología , Sequías , Ecosistema , Predicción , Humedad , Kansas , Modelos Biológicos , Poaceae/crecimiento & desarrollo , Lluvia , Estaciones del Año , Suelo , Temperatura , Factores de TiempoRESUMEN
Many North American grasslands are receiving atmospheric nitrogen (N) deposition at rates above what are considered critical eutrophication thresholds. Yet, potential changes in grassland function due to anthropogenic N deposition are poorly resolved, especially considering that other dynamic factors such as land use and precipitation can also affect N availability. To better understand whether elevated N deposition has altered ecosystem structure or function in North American grasslands, we analyzed a 27-year record of ecophysiological, community, and ecosystem metrics for an annually burned Kansas tallgrass prairie. Over this time, despite increasing rates of N deposition that are within the range of critical loads for grasslands, there was no evidence of eutrophication. Plant N concentrations did not increase, soil moisture did not decline, forb diversity did not decline, and the relative abundance of dominant grasses did not shift toward more eutrophic species. Neither aboveground primary productivity nor N availability to plants increased. The fates of deposited N in grasslands are still uncertain, and could include management losses through burning and grazing. However, evidence from this grassland indicates that eutrophication of North American grassland ecosystems is not an inevitable consequence of current levels of N deposition.
Asunto(s)
Ecosistema , Eutrofización/fisiología , Poaceae/fisiología , Animales , Monitoreo del Ambiente , Nitrógeno , Compuestos de Amonio Cuaternario , Lluvia , Factores de TiempoRESUMEN
Invasive wild pigs (Sus scrofa) are one of the most widespread, destructive vertebrate species globally. Their success can largely be attributed to their generalist diets, which are dominated by plant material but also include diverse animal taxa. Wild pigs are demonstrated nest predators of ground-nesting birds and reptiles, and likely pose a threat to amphibians given their extensive overlap in wetland use. DNA metabarcoding of fecal samples from 222 adult wild pigs culled monthly from 2017 to 2018 revealed a diverse diet dominated by plant material, with 166 plant genera from 56 families and 18 vertebrate species identified. Diet composition varied seasonally with availability for plants and was consistent between sexes. Amphibians were the most frequent vertebrate group consumed and represented the majority of vertebrate species detected, suggesting amphibians are potentially vulnerable to predation by wild pigs in our study region. Mammal, reptile, and bird species were also detected in pig diets, but infrequently. Our results highlight the need for research on the impacts of wild pigs on amphibians to better inform management and conservation of imperiled species.
Asunto(s)
Código de Barras del ADN Taxonómico , ADN , Humanos , Animales , Porcinos , Anfibios/genética , Aves , Sudeste de Estados Unidos , Reptiles , Plantas , Sus scrofa/genéticaRESUMEN
⢠The timing of flowering is a critical component of the ecology of plants and has the potential to structure plant communities. Yet, we know little about how the timing of flowering relates to other functional traits, species abundance, and average environmental conditions. ⢠Here, we assessed first flowering dates (FFDs) in a North American tallgrass prairie (Konza Prairie) for 431 herbaceous species and compared them with a series of other functional traits, environmental metrics, and species abundance across ecological contrasts. ⢠The pattern of FFDs among the species of the Konza grassland was shaped by local climate, can be linked to resource use by species, and patterns of species abundance across the landscape. Peak FFD for the community occurred when soils were typically both warm and wet, while relatively few species began flowering when soils tended to be the driest. Compared with late-flowering species, species that flowered early had lower leaf tissue density and were more abundant on uplands than lowlands. ⢠Flowering phenology can contribute to the structuring of grassland communities, but was largely independent of most functional traits. Therefore, selection for flowering phenology may be independent of general resource strategies.
Asunto(s)
Ecosistema , Flores/fisiología , Poaceae/fisiología , Carácter Cuantitativo Heredable , Kansas , Hojas de la Planta/anatomía & histología , Análisis de Regresión , Especificidad de la EspecieRESUMEN
Parental allocation strategies are of profound interest in life history because they directly impact offspring fitness and therefore are highly valuable for understanding population dynamics and informing management decisions. Yet, numerous questions about reproductive allocation patterns for wild populations of large mammals remain unanswered because of the challenges for measuring allocation in the wild. Using a nine-year longitudinal data set on life-history traits of mother-calf bison pairs, we identified sources of variation in relative maternal allocation (calf mass ratio on mother mass) and assessed the occurrence of reproductive costs associated with differential maternal allocation. We found that heavy mothers provided a lower allocation but still produced heavier calves than light mothers. Older females produced lighter calves and tended to decrease allocation as they aged, supporting the occurrence of reproductive senescence. Mothers that had produced a calf the previous year produced lighter calves and allocated less than mothers that did not lactate the previous year, revealing reproductive costs. However, greater maternal allocation did not reduce the probability of breeding in successive years, and the amount of allocation provided by a mother was positively correlated among the offspring she produced, illustrating individual heterogeneity. Although life-history studies are usually classified as either supporting costs of reproduction or individual quality, our study demonstrates that these contrasting evolutionary forces can shape variation within a single trait. Our work illustrates that many processes can coevolve within a population, emphasizing the need to integrate multiple concepts to better understand the evolution of life-history traits. With regard to management of bison herds, if the goal of culling programs is to select for animals with the best performance, this research suggests that managers should account for the condition and previous reproductive status of mothers when taking culling decisions on juvenile bison.
Asunto(s)
Envejecimiento/fisiología , Bison/fisiología , Metabolismo Energético/fisiología , Reproducción/fisiología , Animales , Animales Recién Nacidos , Peso al Nacer , Peso Corporal , Femenino , EmbarazoRESUMEN
Simultaneous thermal analysis [i.e., thermogravimetry (TG) and differential scanning calorimetry (DSC)] is frequently used in materials science applications and is increasingly being used to study soil organic matter (SOM) stability. Yet, important questions remain, especially with respect to how the soil mineral matrix affects TG-DSC results, which could confound the interpretation of relationships between thermal and biogeochemical SOM stability. The objective of this study was to explore the viability of using infrared gas analyzer (IRGA) based CO(2)/H(2)O evolved gas analysis (EGA) as a supplement or alternative to TG-DSC to improve the characterization of SOM. Here, we subjected reference samples and a set of 28 diverse soil samples from across the U.S. to TG-DSC coupled with IRGA-based EGA. The results showed the technical validity of coupling TG-DSC and CO(2)-EGA, with more than 80% of the theoretically evolved CO(2)-C recovered during pure cellulose and CaCO(3) analysis. CO(2)-EGA and DSC thermal profiles were highly similar, with correlation coefficients generally >0.90. Additionally, CO(2)/H(2)O-EGA proved useful to improve the accuracy of baseline correction, detect the presence of CaCO(3) in soils, and identify SOM oxidative reactions normally hidden in DSC analysis by simultaneous endothermic reactions of soil minerals. Overall, this study demonstrated that IRGA-based CO(2)/H(2)O-EGA constitutes a valuable complement to conventional TG-DSC analysis for SOM characterization.
Asunto(s)
Dióxido de Carbono/química , Compuestos Orgánicos/química , Suelo/química , Agua/química , Rastreo Diferencial de Calorimetría , TermogravimetríaRESUMEN
The productivity of ecosystems and their capacity to support life depends on access to reactive nitrogen (N). Over the past century, humans have more than doubled the global supply of reactive N through industrial and agricultural activities. However, long-term records demonstrate that N availability is declining in many regions of the world. Reactive N inputs are not evenly distributed, and global changes-including elevated atmospheric carbon dioxide (CO2) levels and rising temperatures-are affecting ecosystem N supply relative to demand. Declining N availability is constraining primary productivity, contributing to lower leaf N concentrations, and reducing the quality of herbivore diets in many ecosystems. We outline the current state of knowledge about declining N availability and propose actions aimed at characterizing and responding to this emerging challenge.
Asunto(s)
Ecosistema , Ciclo del Nitrógeno , Nitrógeno , Animales , Dióxido de Carbono/análisis , Herbivoria , Humanos , Nitrógeno/análisis , Nitrógeno/deficiencia , Hojas de la Planta/química , Hojas de la Planta/metabolismo , SueloRESUMEN
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
Asunto(s)
Ecosistema , Suelo , Fenotipo , Hojas de la Planta , PlantasRESUMEN
Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.
Asunto(s)
Ecosistema , Poaceae/crecimiento & desarrollo , Suelo/análisis , Cambio Climático , Sequías , América del Norte , Poaceae/clasificación , Poaceae/metabolismo , Dinámica Poblacional , Lluvia , Especificidad de la Especie , Temperatura , AguaRESUMEN
North American plains bison (Bison bison) have been reintroduced across their former range, yet we know too little about their current diet to understand what drove their past migrations as well as observed continental-scale variation in weight gain and reproduction. In order to better understand the seasonal diets of bison at the continental scale, bison fecal material was collected monthly from April to September in 2019 across 45 sites throughout the conterminous United States. Fecal material was analyzed for dietary quality using near infrared spectroscopy and dietary composition with DNA metabarcoding. As observed in previous research, dietary quality peaked in June and was on average greatest for sites with cold, wet climates. Yet, in April, dietary quality was highest in warmer regions, likely reflecting earlier phenology of plants in southern than northern regions. Independent of climate and season, bison that consumed more warm-season grasses had lower dietary protein concentrations. Interpreting the relative abundance of sequences from different plant species as the relative intake of protein from those species, only 38% of bison protein intake came from grasses. An equal amount of dietary protein came from legumes (38%) and 22% from non-leguminous forbs. Seasonal shifts in bison diet were also clear, in part, following the phenology of functional groups. For example, cool-season grass protein intake was highest in May, while legume protein intake was highest in August. Comparing data taken in June and September 2018 in a previous study with corresponding data in 2019, on average, June [CP] was 20% higher in 2019 than 2018, while September [CP] did not differ between years. Dietary functional group composition was generally similar in amounts and relationships with climate between years, yet in September 2019, legumes contributed 20% more protein and warm-season grasses 14% less than in September 2018. In all, this research demonstrates that bison consistently rely on eudicots for protein with the functional group composition of their diet in some ways consistent across space and time, but also spatially and temporally variable. The early-season inversion of plant quality gradients would have been a strong driver of migratory behavior for large numbers of bison optimizing protein intake. As most bison currently experience protein deficiency, optimizing protein intake under current non-migratory conditions will require increasing the relative abundance of high-protein species such as N2-fixing species.
Asunto(s)
Alimentación Animal , Bison , Clima , Estaciones del Año , Alimentación Animal/análisis , Animales , Calidad de los Alimentos , América del Norte , Estados UnidosRESUMEN
*Humans are increasing both the deposition of reactive nitrogen (N) and concentrations of atmospheric CO(2) on Earth, but the combined effects on terrestrial ecosystems are not clear. In the absence of historical records, it is difficult to know if N availability is currently increasing or decreasing on regional scales. *To determine the nature and timing of past changes in grassland ecosystem dynamics, we measured the composition of stable carbon (C) and N isotopes in leaf tissue from 545 herbarium specimens of 24 vascular plant species collected in Kansas, USA from 1876 to 2008. We also parameterized a simple model of the terrestrial N cycle coupled with a stable isotope simulator to constrain processes consistent with observed patterns. *A prolonged decline in foliar N concentrations began in 1926, while a prolonged decline in foliar delta(15)N values began in 1940. Changes in the difference between foliar and atmospheric C isotopes reveal slightly increased photosynthetic water use efficiency since 1876. *The declines in foliar N concentrations and foliar delta(15)N suggest declining N availability in these grasslands during the 20th century despite decades of anthropogenic N deposition. Our results are consistent with progressive-nitrogen-limitation-type hypotheses where declines in N availability are driven by increased ecosystem N storage as a result of increased atmospheric CO(2).
Asunto(s)
Isótopos de Carbono/análisis , Ecosistema , Ciclo del Nitrógeno , Isótopos de Nitrógeno/análisis , Nitrógeno/análisis , Hojas de la Planta/química , Poaceae/química , Atmósfera , Humanos , Kansas , Modelos Lineales , Modelos Biológicos , Fotosíntesis , Poaceae/fisiologíaRESUMEN
The flowering of grasses is a process critical to plant population dynamics and genetics, herbivore performance, and human health. To better understand the climate factors governing grass flowering, we analyzed the patterns of culm production over 25 years for three perennial tallgrass prairie species at Konza Prairie in Kansas, USA. The three species (Andropogon gerardii, Sorghastrum nutans, and Schizachyrium scoparium) all utilize the C4 photosynthetic pathway and were measured annually at the same locations for the past 25 years in an annually burned watershed. Culm production of all three species increased with higher growing-season soil moisture and precipitation but differed in their responses to water availability at different times during the growing season. Relative to Andropogon, Sorghastrum responded more to precipitation early in the growing season, and Schizachyrium responded more to precipitation late in the growing season. Flowering by each species also revealed a threshold relationship with late-season soil moisture at approximately 1 m depth, which likely is a proxy for season-long water balance. Although flowering can be influenced by conditions antecedent to the current growing season, neither soil moisture nor precipitation during the previous year influenced flowering over the 25-year period. Flowering culm production averaged 9% and 7% of total graminoid aboveground net primary production (ANPP) in the uplands and lowlands, respectively. Interannual variation in ANPP correlated only with Sorghastrum flowering, suggesting a predominant role of the species in ANPP responses to climate.