Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(23): 12598-12605, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457154

RESUMEN

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.


Asunto(s)
Antibacterianos/farmacología , Nanoestructuras/química , Estrés Mecánico , Antibacterianos/química , Adhesión Bacteriana , Elasticidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Silicio/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674814

RESUMEN

The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE). To mimic the superhydrophobic nature of insect wings, the nano-Si was further functionalised with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFTS). The viability of Aspergillus brasiliensis spores, in contact with either hydrophobic or hydrophilic nano-Si surfaces, was determined using a combination of standard microbiological assays, confocal laser scanning microscopy (CLSM), and focused ion beam scanning electron microscopy (FIB-SEM). Results indicated the breakdown of the fungal spore membrane upon contact with the hydrophilic nano-Si surfaces. By contrast, hydrophobised nano-Si surfaces prevented the initial attachment of the fungal conidia. Hydrophilic nano-Si surfaces exhibited both antifungal and fungicidal properties toward attached A. brasisiensis spores via a 4-fold reduction of attached spores and approximately 9-fold reduction of viable conidia from initial solution after 24 h compared to their planar Si counterparts. Thus, we reveal, for the first time, the physical rupturing of attaching fungal spores by biomimetic hydrophilic nanostructured surfaces.


Asunto(s)
Odonata , Silicio , Animales , Silicio/farmacología , Silicio/química , Esporas Fúngicas , Biomimética/métodos , Antifúngicos , Propiedades de Superficie
3.
Chem Rev ; 120(13): 6048-6069, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32364371

RESUMEN

For many years, an extensive array of chemometric methods have provided a platform upon which a quantitative description of environmental conditions can be obtained. Applying chemometric methods to environmental data allows us to identify and describe the interrelations between certain environmental drivers. They also provide an insight into the interrelationships between these drivers and afford us a greater understanding of the potential impact that these drivers can place upon the environment. However, an effective marriage of these two systems has not been performed. Therefore, it is the aim of this review to highlight the advantages of using chemometrics and sensors to identify hidden trends in environmental parameters, which allow the state of the environment to be effectively monitored. Despite the combination of chemometrics and sensors, to capture new developments and applications in the field of environmental sciences, these methods have not been extensively used. Importantly, although different parameters and monitoring procedures are required for different environments (e.g., air, water, soil), they are not distinct, separate entities. Contemporary developments in the use of chemometrics afford us the ability to predict changes in different aspects of the environment using instrumental methods. This review also provides an insight into the prevailing trends and the future of environmental sensing, highlighting that chemometrics can be used to enhance our ability to monitor the environment. This enhanced ability to monitor environmental conditions and to predict trends would be beneficial to government and research agencies in their ability to develop environmental policies and analysis procedures.


Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental/análisis , Política Ambiental
4.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885713

RESUMEN

Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20-30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Melaleuca/química , Aceites Volátiles/química , Antibacterianos/farmacología , Presión Atmosférica , Materiales Biocompatibles Revestidos/farmacología , Implantes Dentales/microbiología , Humanos , Aceites Volátiles/farmacología , Gases em Plasma , Polímeros/química , Prótesis e Implantes , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Titanio/química
5.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202224

RESUMEN

Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Pseudomonas aeruginosa/fisiología , Sincrotrones , Análisis de Fourier , Espectroscopía Infrarroja por Transformada de Fourier
6.
Langmuir ; 35(6): 2422-2430, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30628784

RESUMEN

The waxy epicuticle of dragonfly wings contains a unique nanostructured pattern that exhibits bactericidal properties. In light of emerging concerns of antibiotic resistance, these mechano-bactericidal surfaces represent a particularly novel solution by which bacterial colonization and the formation of biofilms on biomedical devices can be prevented. Pathogenic bacterial biofilms on medical implant surfaces cause a significant number of human deaths every year. The proposed mechanism of bactericidal activity is through mechanical cell rupture; however, this is not yet well understood and has not been well characterized. In this study, we used giant unilamellar vesicles (GUVs) as a simplified cell membrane model to investigate the nature of their interaction with the surface of the wings of two dragonfly species, Austrothemis nigrescens and Trithemis annulata, sourced from Victoria, Australia, and the Baix Ebre and Terra Alta regions of Catalonia, Spain. Confocal laser scanning microscopy and cryo-scanning electron microscopy techniques were used to visualize the interactions between the GUVs and the wing surfaces. When exposed to both natural and gold-coated wing surfaces, the GUVs were adsorbed on the surface, exhibiting significant deformation, in the process of membrane rupture. Differences between the tensile rupture limit of GUVs composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine and the isotropic tension generated from the internal osmotic pressure were used to indirectly determine the membrane tensions, generated by the nanostructures present on the wing surfaces. These were estimated as being in excess of 6.8 mN m-1, the first experimental estimate of such mechano-bactericidal surfaces. This simple model provides a convenient bottom-up approach toward understanding and characterizing the bactericidal properties of nanostructured surfaces.


Asunto(s)
Nanoestructuras/química , Liposomas Unilamelares/química , Alas de Animales/química , Adsorción , Animales , Odonata/anatomía & histología , Fosfatidilcolinas/química , Humectabilidad
7.
J Synchrotron Radiat ; 25(Pt 3): 874-877, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714199

RESUMEN

Damselflies Calopteryx haemorrhoidalis exhibiting black wings are found in the western Mediterranean, Algeria, France, Italy, Spain and Monaco. Wing pigmentation is caused by the presence of melanin, which is involved in physiological processes including defence reactions, wound healing and sclerotization of the insect. Despite the important physiological roles of melanin, the presence and colour variation among males and females of the C. haemorrhoidalis species and the localization of the pigment within the wing membrane remain poorly understood. In this study, infrared (IR) microspectroscopy, coupled with the highly collimated synchrotron IR beam, was employed in order to identify the distribution of the pigments in the wings at a high spatial resolution. It was found that the melanin is localized in the procuticle of the C. haemorrhoidalis damselfly wings, distributed homogeneously within this layer, and not associated with the lipids of the epicuticle.


Asunto(s)
Proteínas de Insectos/metabolismo , Melaninas/metabolismo , Alas de Animales/metabolismo , Animales , Análisis de Fourier , Masculino , Odonata , Espectrofotometría Infrarroja/métodos , Sincrotrones
8.
Appl Microbiol Biotechnol ; 101(11): 4683-4690, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28246886

RESUMEN

Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8T and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8T and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.


Asunto(s)
Nanoestructuras , Odonata/microbiología , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Alas de Animales/microbiología , Animales , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie , Alas de Animales/ultraestructura
9.
Langmuir ; 32(41): 10744-10751, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27718587

RESUMEN

The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 µg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.

10.
Antonie Van Leeuwenhoek ; 109(8): 1091-100, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27180097

RESUMEN

Two Gram-negative, non-pigmented, motile bacteria were isolated from a sea water sample collected at St. Kilda Beach, Port Philip Bay, Victoria, Australia. The two strains were found to grow between 4 and 40 °C, pH 5-10 and tolerate up to 10 % NaCl. A phylogenetic study, based on a 16S rRNA gene sequence analysis indicated that strains NP 3b2(T) and H 94 belong to the genus Thalassospira. The sequence similarity of the 16S rRNA gene between the two new isolates is 99.8 % and between these strains and all validly named Thalassospira species was found to be in the range of 95-99.4 %. The DNA-DNA relatedness between the two strains was found to be 80.2 %, while relatedness with other validly named species of the genus Thalassospira was between 53 and 65 %. The average nucleotide identity (ANI) and the in silico genome-to-genome distance (GGD) between the two bacteria and T. profundimaris WP0211(T), T. xiamenensis M-5(T), 'T. permensis' NBRC 106175(T) and T. lucentensis QMT2(T) was 76-82 % and 21-25 %, respectively. The results of phylogenetic and genomic analysis, together with physiological and biochemical properties, indicated that the two strains represent a new species of the genus Thalassospira. Based on these data, a new species, Thalassospira australica, is proposed with strain NP 3b2(T) (=KMM 6365(T) = JCM 31222(T)) as the type strain.


Asunto(s)
Rhodospirillaceae/clasificación , Rhodospirillaceae/aislamiento & purificación , Agua de Mar/microbiología , Australia , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/metabolismo , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Rhodospirillaceae/genética , Rhodospirillaceae/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
Appl Microbiol Biotechnol ; 99(16): 6831-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25895086

RESUMEN

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.


Asunto(s)
Adhesión Bacteriana , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Propiedades de Superficie , Titanio , Humanos , Microscopía de Fuerza Atómica
12.
Antonie Van Leeuwenhoek ; 107(1): 119-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326795

RESUMEN

Nine non-pigmented, motile, Gram-negative bacteria originally designated as Alteromonas macleodii deep-sea ecotypes, were isolated from seawater samples collected from four separate locations; two deep-sea sites in the Mediterranean Sea and surface water of the Aegean Sea and English Channel. The six strains studied in vitro were found to tolerate up to 20 % NaCl. The DNA-DNA relatedness between the deep-sea ecotype strains was found to be between 75 and 89 %, whilst relatedness with the validly named Alteromonas species was found to be between 31 and 69 %. The average nucleotide identity (ANI) amongst the deep-sea ecotype strains was found to be 98-100 %; the in silico genome-to-genome distance (GGD), 85-100 %; the average amino acid identity (AAI) of all conserved protein-coding genes, 95-100 %; and the strains possessed 30-32 of the Karlin's genomic signature dissimilarity. The ANI between the deep-sea ecotype strains and A. macleodii ATCC 27126(T) and Alteromonas australica H 17(T) was found to be 80.6 and 74.6 %, respectively. A significant correlation was observed between the phenotypic data obtained in vitro and data retrieved in silico from whole genome sequences. The results of a phylogenetic study that incorporated a 16S rRNA gene sequence analysis, multilocus phylogenetic analysis (MLPA) and genomic analysis, together with the physiological, biochemical and chemotaxonomic data, clearly indicated that the group of deep-sea ecotype strains represents a distinct species within the genus Alteromonas. Based on these data, a new species, Alteromonas mediterranea, is proposed. The type strain is DE(T) ( = CIP 110805(T) = LMG 28347(T) = DSM 17117(T)).


Asunto(s)
Alteromonas/clasificación , Alteromonas/fisiología , Agua de Mar/microbiología , Alteromonas/genética , Océano Atlántico , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genoma Bacteriano , Locomoción , Mar Mediterráneo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Cloruro de Sodio/toxicidad
13.
Biofouling ; 31(3): 297-307, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25959368

RESUMEN

Aliphatic crystallites, characteristic of the eicosane and docosane components of naturally occurring lipids, were found to form microtextures that were structured by specific interactions with ordered graphite (HOPG) used as the underlying substratum, as confirmed by scanning electron microscopy (SEM) and fast Fourier transform (FFT) analysis. Confocal scanning laser microscopy (CLSM) showed highly directed bacterial alignment for two bacterial species (spherical and rod-shaped), reflecting the preferential orientation of the crystallite-air-water interfaces to give linear and triangular bacterial patterning. The mechanisms of bacterial attachment are demonstrated in terms of the balance between effective radial adhesional forces and the capillary forces resulting from the water contact angle of the bacteria at the three-phase line (TPL) of the lipid surface. It is suggested that these microtextured surfaces, which exhibit the ability to limit bacterial adhesion to a precise patterning at the lipid TPL, could be used as a means of controlling bacterial colonization.


Asunto(s)
Alcanos/química , Adhesión Bacteriana , Lípidos/química , Análisis de Fourier , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/crecimiento & desarrollo , Espectrometría Raman , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie , Humectabilidad
14.
Molecules ; 19(9): 13614-30, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25185068

RESUMEN

Insects and plants are two types of organisms that are widely separated on the evolutionary tree; for example, plants are mostly phototrophic organisms whilst insects are heterotrophic organisms. In order to cope with environmental stresses, their surfaces have developed cuticular layers that consist of highly sophisticated structures. These structures serve a number of purposes, and impart useful properties to these surfaces. These two groups of organisms are the only ones identified thus far that possess truly superhydrophobic and self-cleaning properties. These properties result from their micro- and nano-scale structures, comprised of three-dimensional wax formations. This review analyzes the surface topologies and surface chemistry of insects and plants in order to identify the features common to both organisms, with particular reference to their superhydrophobic and self-cleaning properties. This information will be valuable when determining the potential application of these surfaces in the design and manufacture of superhydrophobic and self-cleaning devices, including those that can be used in the manufacture of biomedical implants.


Asunto(s)
Insectos/ultraestructura , Plantas/ultraestructura , Animales , Materiales Biomiméticos/química , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Humectabilidad
15.
Acta Biomater ; 177: 20-36, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342192

RESUMEN

While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.


Asunto(s)
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Biopelículas , Propiedades de Superficie , Materiales Biocompatibles/química
16.
Biophys J ; 104(4): 835-40, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23442962

RESUMEN

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials.


Asunto(s)
Bacterias/química , Modelos Biológicos , Nanoestructuras/química , Alas de Animales/química , Animales , Antibacterianos/química , Bacterias/patogenicidad , Bacterias/efectos de la radiación , Hemípteros , Interacciones Huésped-Patógeno , Rayos Infrarrojos , Modelos Químicos , Alas de Animales/ultraestructura
17.
J Synchrotron Radiat ; 20(Pt 3): 482-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23592628

RESUMEN

The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition, the data generated from two separate synchrotron IR facilities, the Australian Synchrotron Infrared Microspectroscopy beamline (AS-IRM) and the Synchrotron Radiation Center (SRC), University of Wisconsin-Madison, IRENI beamline, were analysed and compared. Characteristic peaks in the IR spectra of the wings were assigned primarily to aliphatic hydrocarbon and amide functionalities, which were considered to be an indication of the presence of waxy and proteinaceous components, respectively, in good agreement with the literature. Chemical distribution maps showed that, while the protein component was homogeneously distributed, a significant degree of heterogeneity was observed in the distribution of the waxy component, which may contribute to the self-cleaning and aerodynamic properties of the cicada wing. When comparing the data generated from the two beamlines, it was determined that the SRC IRENI beamline was capable of producing higher-spatial-resolution distribution images in a shorter time than was achievable at the AS-IRM beamline, but that spectral noise levels per pixel were considerably lower on the AS-IRM beamline, resulting in more favourable data where the detection of weak absorbances is required. The data generated by the two complementary synchrotron IR methods on the chemical composition of cicada wings will be immensely useful in understanding their unusual properties with a view to reproducing their characteristics in, for example, industry applications.


Asunto(s)
Hemípteros/química , Espectrofotometría Infrarroja/métodos , Sincrotrones , Termografía/métodos , Alas de Animales/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
18.
Appl Microbiol Biotechnol ; 97(20): 9257-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23250225

RESUMEN

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hemípteros/microbiología , Alas de Animales/química , Animales , Bacterias/citología , Hemípteros/química , Interacciones Hidrofóbicas e Hidrofílicas , Viabilidad Microbiana , Propiedades de Superficie , Alas de Animales/microbiología
19.
Antonie Van Leeuwenhoek ; 103(2): 265-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22965754

RESUMEN

Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, heterotrophic marine bacteria known for their versatile metabolic activities. Identification and classification of novel species belonging to the genus Alteromonas generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be resolved at the 97 % threshold value of the 16S rRNA gene sequence similarity. In this study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) revealed a threshold value of 98.9 % that could be considered as the species cut-off value for the delineation of Alteromonas spp. MALDI-TOF MS data analysis reconfirmed the Alteromonas species clustering. MLPA and MALDI-TOF MS both generated data that were comparable to that of the 16S rRNA gene sequence analysis and may be considered as useful complementary techniques for the description of new Alteromonas species.


Asunto(s)
Alteromonas/clasificación , Alteromonas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Filogenia , Análisis de Secuencia de ADN/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alteromonas/química , Análisis por Conglomerados , Genes Esenciales , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética
20.
Antonie Van Leeuwenhoek ; 103(4): 877-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23291832

RESUMEN

A non-pigmented, motile, Gram-negative bacterium designated H 17(T) was isolated from a seawater sample collected in Port Phillip Bay (the Tasman Sea, Pacific Ocean). The new organism displayed optimal growth between 4 and 37 °C, was found to be neutrophilic and slightly halophilic, tolerating salt water environments up to 10 % NaCl. Strain H 17(T) was found to be able to degrade starch and Tween 80 but unable to degrade gelatin or agar. Phosphatidylglycerol (27.7 %) and phosphatidylethanolamine (72.3 %) were found to be the only associated phospholipids. The major fatty acids identified are typical for the genus Alteromonas and include C16:0, C16:1ω7, C17:1ω8 and C18:1ω7. The G+C content of the DNA was found to be 43.4 mol%. A phylogenetic study, based on the 16S rRNA gene sequence analysis and Multilocus Phylogenetic Analysis, clearly indicated that strain H 17(T) belongs to the genus Alteromonas. The DNA-DNA relatedness between strain H 17(T) and the validly named Alteromonas species was between 30.7 and 46.4 mol%. Based on these results, a new species, Alteromonas australica, is proposed. The type strain is H 17(T) (= KMM 6016(T) = CIP 109921(T)).


Asunto(s)
Alteromonas/clasificación , Alteromonas/aislamiento & purificación , Agua de Mar/microbiología , Alteromonas/genética , Alteromonas/fisiología , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Océano Pacífico , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA