RESUMEN
Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.
Asunto(s)
Amoníaco/química , Glutamina/química , Péptidos/química , Teoría Funcional de la Densidad , Fluorescencia , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Óptica y Fotónica/métodosRESUMEN
With their unusual electronic structures, organic radical molecules display luminescence properties potentially relevant to lighting applications; yet, their luminescence quantum yield and stability lag behind those of other organic emitters. Here, we designed donor-acceptor neutral radicals based on an electron-poor perchlorotriphenylmethyl or tris(2,4,6-trichlorophenyl)methyl radical moiety combined with different electron-rich groups. Experimental and quantum-chemical studies demonstrate that the molecules do not follow the Aufbau principle: the singly occupied molecular orbital is found to lie below the highest (doubly) occupied molecular orbital. These donor-acceptor radicals have a strong emission yield (up to 54%) and high photostability, with estimated half-lives reaching up to several months under pulsed ultraviolet laser irradiation. Organic light-emitting diodes based on such a radical emitter show deep-red/near-infrared emission with a maximal external quantum efficiency of 5.3%. Our results provide a simple molecular-design strategy for stable, highly luminescent radicals with non-Aufbau electronic structures.
RESUMEN
The excited state properties and intersystem crossing dynamics of a series of donor-bridge-acceptor carbene metal-amides based upon the coinage metals Cu, Ag, Au, are investigated using quantum dynamics simulations and supported by photophysical characterisation. The simulated intersystem rates are consistent with experimental observations making it possible to provide a detailed interpretation of the excited state dynamics which ultimately control their functional properties. It is demonstrated that for all complexes there is a competition between the direct intersystem crossing occurring between the 1CT and 3CT states and indirect pathways which couple to an intermediate locally excited ππ* triplet state (3LE) on either the donor or acceptor ligands. The energy of the 3LE states decreases as the size of the metal decreases meaning that the indirect pathway plays an increasingly important role for the lighter metals. Importantly whenever the direct pathway is efficient, the presence of indirect pathways is detrimental to the overall rate of ISC as they provide a slower alternative pathway. Our results provide a detailed insight into the mechanism of intersystem crossing in these complexes and will greatly facilitate the design of new higher performing molecules.
RESUMEN
Harnessing the near-infrared (NIR) region of the electromagnetic spectrum is exceedingly important for photovoltaics, telecommunications, and the biomedical sciences. While thermally activated delayed fluorescent (TADF) materials have attracted much interest due to their intense luminescence and narrow exchange energies (ΔEST), they are still greatly inferior to conventional fluorescent dyes in the NIR, which precludes their application. This is because securing a sufficiently strong donor-acceptor (D-A) interaction for NIR emission alongside the narrow ΔEST required for TADF is highly challenging. Here, we demonstrate that by abandoning the common polydonor model in favor of a D-A dyad structure, a sufficiently strong D-A interaction can be obtained to realize a TADF emitter capable of photoluminescence (PL) close to 1000 nm. Electroluminescence (EL) at a peak wavelength of 904 nm is also reported. This strategy is both conceptually and synthetically simple and offers a new approach to the development of future NIR TADF materials.
RESUMEN
There is a growing body of experimental work showing that protein aggregates associated with amyloid fibrils feature intrinsic fluorescence. In order to understand the microscopic origin of this behavior observed in non-aromatic aggregates of peptides and proteins, we conducted a combined experimental and computational study on the optical properties of amyloid-derived oligopeptides in the near-UV region. We have focused on a few model systems having charged termini (zwitterionic) or acetylated termini. For the zwitterionic system, we were able to simulate the longer tail absorption in the near UV (250-350 nm), supporting the experimental results in terms of excitation spectra. We analyzed the optical excitations responsible for the low-energy absorption and found a large role played by charge-transfer states around the termini. These charge-transfer excitations are very sensitive to the conformation of the peptide and in realistic fibrils may involve inter and intra chain charge reorganization.
Asunto(s)
Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Teoría Funcional de la Densidad , Microscopía de Fuerza Atómica , Espectrofotometría , TermodinámicaRESUMEN
Copper and gold halide and pseudo-halide complexes stabilised by methyl-, ethyl- and adamantyl-substituted cyclic (alkyl)(amino)carbene (CAAC) ligands are mostly linear monomers in the solid state, without aurophilic Auâ â â Au interactions. (Et2 L)CuCl shows the highest photoluminescence quantum yield (PLQY) in the series, 70 %. The photoemissions of Me2 L and Et2 L copper halide complexes show S1 âS0 fluorescence on the ns time scale, in agreement with theory, as well as a long-lived emission. Monomeric (Me2 L)CuNCS is a white emitter, whereas dimeric [(Et2 L)Cu(µ-NCS)]2 shows intense yellow emission with a photoluminescence (PL) quantum yield of 49 %. The reaction of (Ad L)MCl (M=Cu or Au) with phenols ArOH (Ar=Ph, 2,6-F2 C6 H3 , 2,6-Me2 C6 H3 , 3,5-tBu2 C6 H3 , 2-tBu-5-MeC6 H3 , 2-pyridyl), thiophenol, or aromatic amines H2 NAr'' (Ar'=Ph, 3,5-(CF3 )2 C6 H3 , C6 F5 , 2-py) afforded the corresponding phenolato, thiophenolato and amido complexes. Although the emission wavelengths are only marginally affected by the ring substitution pattern, the PL intensities respond sensitively to the presence of substituents in the ortho or meta positions. In gold aryloxides, PL is controlled by steric factors, with strong luminescence in compounds with Au-O-C-C torsion angles <50°. Calculations confirm the dependence of oscillator strength on the torsion angle, as well as the inter-ligand charge transfer nature of the emission. The HOMO/LUMO energy levels were estimated based on first reduction and oxidation potentials.
RESUMEN
A new family of cyclometallated gold(III) thiolato complexes based on pyrazine-centred pincer ligands has been prepared, (C^Npz ^C)AuSR, where C^Npz ^C=2,6-bis(4-But C6 H4 )pyrazine dianion and R=Ph (1), C6 H4 tBu-4 (2), 2-pyridyl (3), 1-naphthyl (1-Np, 4), 2-Np (5), quinolinyl (Quin, 6), 4-methylcoumarinyl (Coum, 7) and 1-adamantyl (8). The complexes were isolated as yellow to red solids in high yields using mild synthetic conditions. The single-crystal X-ray structures revealed that the colour of the deep-red solids is associated with the formation of a particular type of short (3.2-3.3â Å) intermolecular pyrazineâ â â pyrazine π-interactions. In some cases, yellow and red crystal polymorphs were formed; only the latter were emissive at room temperature. Combined NMR and UV/Vis techniques showed that the supramolecular π-stacking interactions persist in solution and give rise to intense deep-red photoluminescence. Monomeric molecules show vibronically structured green emissions at low temperature, assigned to ligand-based 3 IL(C^N^C) triplet emissions. By contrast, the unstructured red emissions correlate mainly with a 3 LLCT(SRâ{(C^Npz ^C)2 }) charge transfer transition from the thiolate ligand to the πâ â â π dimerized pyrazine. Unusually, the π-interactions can be influenced by sample treatment in solution, such that the emissions can switch reversibly from red to green. To our knowledge this is the first report of aggregation-enhanced emission in gold(III) chemistry.
RESUMEN
Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites.
RESUMEN
The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.
RESUMEN
Carbene-metal-amides (CMAs) are an emerging class of photoemitters based on a linear donor-linker-acceptor arrangement. They exhibit high flexibility about the carbene-metal and metal-amide bonds, leading to a conformational freedom which has a strong influence on their photophysical properties. Herein we report CMA complexes with (1) nearly coplanar, (2) twisted, (3) tilted, and (4) tilt-twisted orientations between donor and acceptor ligands and illustrate the influence of preferred ground-state conformations on both the luminescence quantum yields and excited-state lifetimes. The performance is found to be optimum for structures with partially twisted and/or tilted conformations, resulting in radiative rates exceeding 1 × 106 s-1. Although the metal atoms make only small contributions to HOMOs and LUMOs, they provide sufficient spin-orbit coupling between the low-lying excited states to reduce the excited-state lifetimes down to 500 ns. At the same time, high photoluminescence quantum yields are maintained for a strongly tilted emitter in a host matrix. Proof-of-concept organic light-emitting diodes (OLEDs) based on these new emitter designs were fabricated, with a maximum external quantum efficiency (EQE) of 19.1% with low device roll-off efficiency. Transient electroluminescence studies indicate that molecular design concepts for new CMA emitters can be successfully translated into the OLED device.
RESUMEN
Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states.
RESUMEN
Carbene-metal-amides are soluble and thermally stable materials which have recently emerged as emitters in high-performance organic light-emitting diodes. Here we synthesise carbene-metal-amide photoemitters with CF3-substituted ligands to show sky-blue to deep-blue photoluminescence from charge-transfer excited states. We demonstrate that the emission colour can be adjusted from blue to yellow and observe that the relative energies of charge transfer and locally excited triplet states influence the performance of the deep-blue emission. High thermal stability and insensitivity to aggregation-induced luminescence quenching allow us to fabricate organic light-emitting diodes in both host-free and host-guest architectures. We report blue devices with a peak external quantum efficiency of 17.3% in a host-free emitting layer and 20.9% in a polar host. Our findings inform the molecular design of the next generation of stable blue carbene-metal-amide emitters.
RESUMEN
Multiple donor-acceptor-type carbazole-benzonitrile derivatives that exhibit thermally activated delayed fluorescence (TADF) are the state of the art in efficiency and stability in sky-blue organic light-emitting diodes. However, such a motif still suffers from low reverse intersystem crossing rates (kRISC ) with emission peaks <470 nm. Here, a weak acceptor of cyanophenyl is adopted to replace the stronger cyano one to construct blue emitters with multiple donors and acceptors. Both linear donor-π-donor and acceptor-π-acceptor structures are observed to facilitate delocalized excited states for enhanced mixing between charge-transfer and locally excited states. Consequently, a high kRISC of 2.36 × 106 s-1 with an emission peak of 456 nm and a maximum external quantum efficiency of 22.8% is achieved. When utilizing this material to sensitize a blue multiple-resonance TADF emitter, the corresponding device simultaneously realizes a maximum external quantum efficiency of 32.5%, CIEy ≈ 0.12, a full width at half maximum of 29 nm, and a T80 (time to 80% of the initial luminance) of > 60 h at an initial luminance of 1000 cd m-2 .
RESUMEN
Conformationally flexible "Carbene-Metal-Amide" (CMA) complexes of copper and gold have been developed based on a combination of sterically hindered cyclic (alkyl)(amino)carbene (CAAC) and 6- and 7-ring heterocyclic amide ligands. These complexes show photoemissions across the visible spectrum with PL quantum yields of up to 89% in solution and 83% in host-guest films. Single crystal X-ray diffraction and photoluminescence (PL) studies combined with DFT calculations indicate the important role of ring structure and conformational flexibility of the amide ligands. Time-resolved PL shows efficient delayed emission with sub-microsecond to microsecond excited state lifetimes at room temperature, with radiative rates exceeding 106 s-1. Yellow organic light-emitting diodes (OLEDs) based on a 7-ring gold amide were fabricated by thermal vapor deposition, while the sky-blue to warm-white mechanochromic behavior of the gold phenothiazine-5,5-dioxide complex enabled fabrication of the first CMA-based white light-emitting OLED.
RESUMEN
The original version of this Article contained an error in the spelling of the author Dan Credgington, which was incorrectly given as Dan Credington. This has now been corrected in both the PDF and HTML versions of the Article.
RESUMEN
Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains. We evaluate the temperature dependence and role of electron-phonon coupling leading to fast internal conversion in systems with strong interchain coupling and the extent to which this can be turned off by varying side chain substitution. By sterically decreasing interchain interaction, we present an effective approach to increase the fluorescence quantum yield of low-energy gap polymers. We present a red-NIR-emitting amorphous polymer with the highest reported film luminescence quantum efficiency of 18% whose mobility concurrently exceeds that of amorphous-Si. This is a key result toward the development of single-layer optoelectronic devices that require both properties.
RESUMEN
Correction for 'Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence' by Alexander S. Romanov et al., Chem. Commun., 2016, 52, 6379-6382.
RESUMEN
Efficient vacuum-processed organic light-emitting diodes are fabricated using a carbene-metal-amide material, CMA1. An electroluminescence (EL) external quantum efficiency of 23% is achieved in a host-free emissive layer comprising pure CMA1. Furthermore external quantum efficiencies of up to 26.9% are achieved in host-guest emissive layers. EL spectra are found to depend on both the emissive-layer doping concentration and the choice of host material, enabling tuning of emission color from mid-green (Commission Internationale de l'Éclairage co-ordinates [0.24, 0.46]) to sky blue ([0.22 0.35]) without changing dopant. This tuning is achieved without compromising luminescence efficiency (>80%) while maintaining a short radiative lifetime of triplets (<1 µs).
RESUMEN
Electrically injected charge carriers in organic light-emitting devices (OLEDs) undergo recombination events to form singlet and triplet states in a 1:3 ratio, representing a fundamental hurdle for achieving high quantum efficiency. Dopants based on thermally activated delayed fluorescence (TADF) have emerged as promising candidates for addressing the spin statistics issue in OLEDs. In these materials, reverse singlet-triplet intersystem crossing (rISC) becomes efficient, thereby activating luminescence pathways for weakly emissive triplet states. However, despite a growing consensus that torsional vibrations facilitate spin-orbit-coupling- (SOC-) driven ISC in these molecules, there is a shortage of experimental evidence. We use transient electron spin resonance and theory to show unambiguously that SOC interactions drive spin conversion and that ISC is a dynamic process gated by conformational fluctuations for benchmark carbazolyl-dicyanobenzene TADF emitters.
RESUMEN
Organometal halide perovskites (OHP) are promising materials for low-cost, high-efficiency light-emitting diodes. In films with a distribution of two-dimensional OHP nanosheets and small three-dimensional nanocrystals, an energy funnel can be realized that concentrates the excitations in highly efficient radiative recombination centers. However, this energy funnel is likely to contain inefficient pathways as the size distribution of nanocrystals, the phase separation between the OHP and the organic phase. Here, we demonstrate that the OHP crystallite distribution and phase separation can be precisely controlled by adding a molecule that suppresses crystallization of the organic phase. We use these improved material properties to achieve OHP light-emitting diodes with an external quantum efficiency of 15.5%. Our results demonstrate that through the addition of judiciously selected molecular additives, sufficient carrier confinement with first-order recombination characteristics, and efficient suppression of non-radiative recombination can be achieved while retaining efficient charge transport characteristics.