Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2122595119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35609195

RESUMEN

Despite recent advances in cancer therapy, hard-to-reach, unidentified tumors remain a significant clinical challenge. A promising approach is to treat locatable and accessible tumors locally and stimulate antitumor immunity in situ to exert systemic effects against distant tumors. We hypothesize that a carrier of immunotherapeutics can play a critical role in activating antitumor immunity as an immunoadjuvant and a local retainer of drug combinations. Here, we develop a polyethyleneimine-lithocholic acid conjugate (2E'), which forms a hydrophobic core and cationic surface to codeliver hydrophobic small molecules and anionic nucleic acids and activates antigen-presenting cells via the intrinsic activities of 2E' components. 2E' delivers paclitaxel and small-interfering RNA (siRNA) targeting PD-L1 (or cyclic dinucleotide, [CDN]) to induce the immunogenic death of tumor cells and maintain the immunoactive tumor microenvironment, and further activates dendritic cells and macrophages, leveraging the activities of loaded drugs. A single local administration of 2E' or its combination with paclitaxel and PD-L1­targeting siRNA or CDN induces strong antitumor immunity, resulting in immediate regression of large established tumors, tumor-free survival, an abscopal effect on distant tumors, and resistance to rechallenge and metastasis in multiple models of murine tumors, including CT26 colon carcinoma, B16F10 melanoma, and 4T1 breast cancer. This study supports the finding that local administration of immunotherapeutics, when accompanied by the rationally designed carrier, can effectively protect the host from distant and recurrent diseases.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Línea Celular Tumoral , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ácidos Nucleicos/uso terapéutico , Paclitaxel/uso terapéutico , Polímeros/uso terapéutico
2.
Nano Lett ; 19(11): 8333-8341, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31657935

RESUMEN

A group of chemotherapeutic drugs has gained increasing interest in cancer immunotherapy due to the potential to induce immunogenic cell death (ICD). A critical challenge in using the ICD inducers in cancer immunotherapy is the immunotoxicity accompanying their antiproliferative effects. To alleviate this, a nanocapsule formulation of carfilzomib (CFZ), an ICD-inducing proteasome inhibitor, was developed using interfacial supramolecular assembly of tannic acid (TA) and iron, supplemented with albumin coating. The albumin-coated CFZ nanocapsules (CFZ-pTA-alb) attenuated CFZ release, reducing toxicity to immune cells. Moreover, due to the adhesive nature of the TA assembly, CFZ-pTA-alb served as a reservoir of damage-associated molecular patterns released from dying tumor cells to activate dendritic cells. Upon intratumoral administration, CFZ-pTA-alb prolonged tumor retention of CFZ and showed consistently greater antitumor effects than cyclodextrin-solubilized CFZ (CFZ-CD) in B16F10 and CT26 tumor models. Unlike CFZ-CD, the locally injected CFZ-pTA-alb protected or enhanced CD8+ T cell population in tumors, helped develop splenocytes with tumor-specific interferon-γ response, and delayed tumor development on the contralateral side in immunocompetent mice (but not in athymic nude mice), supporting that CFZ-pTA-alb contributed to activating antitumor immunity. This study demonstrates that sustained delivery of ICD inducers by TA-based nanocapsules is an effective way of translating local ICD induction to systemic antitumor immunity.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanocápsulas/química , Neoplasias/tratamiento farmacológico , Oligopéptidos/administración & dosificación , Taninos/química , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Humanos , Inmunidad/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Oligopéptidos/uso terapéutico
3.
Am J Pathol ; 184(12): 3176-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25455686

RESUMEN

Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten(+/-)) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten(+/-) mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b(+)Gr1(+) cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten(+/-) model of cancer.


Asunto(s)
Inflamación/patología , Fosfohidrolasa PTEN/genética , Próstata/patología , Neoplasias de la Próstata/patología , Prostatitis/metabolismo , Animales , Antígeno CD11b/metabolismo , Linfocitos T CD4-Positivos/citología , Carcinogénesis , Proliferación Celular , Separación Celular , ADN Complementario/metabolismo , Epitelio/metabolismo , Citometría de Flujo , Genotipo , Inmunohistoquímica , Luminiscencia , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias de la Próstata/metabolismo , Bazo/metabolismo
4.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915654

RESUMEN

Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes. BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, significantly accumulate with increased prostate volume. TREM2 + and MARCO + macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2+ macrophages have significantly higher neutral lipid than TREM2- macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. These data define two new BPH immune subpopulations, TREM2+ and MARCO+ macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.

5.
Res Sq ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168414

RESUMEN

The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia. After the injection of ovalbumin peptide-specific T cells, POET3 prostates exhibited an influx of inflammatory cells and an increase in pro-inflammatory cytokines that led to epithelial and stromal hyperplasia. We have previously demonstrated with the POET3 model that inflammation expands the basal prostate stem cell (bPSC) population and promotes bPSC differentiation in organoid cultures. In this study, we investigated the mechanisms underlying the impact of inflammation on bPSC. We found that AR activity was enhanced in inflamed bPSC and was essential for bPSC differentiation in organoid cultures. Most importantly, we identified, for the first time, interleukin 1 receptor antagonist (IL-1RA) as a key regulator of AR in basal stem cells. IL-1RA was one of the top genes upregulated by inflammation and inhibition of IL-1RA abrogated the enhanced AR nuclear accumulation and activity in organoids derived from inflamed bPSC. The mirroring effects of IL-1RA recombinant protein and IL-1α neutralizing antibody suggest that IL-1RA may function by antagonizing IL-1α inhibition of AR expression. Furthermore, we established a lineage tracing model to follow bPSC during inflammation and under castrate conditions. We found that inflammation induced bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation in bPSC is sufficient for their proliferation and differentiation under androgen-deprived conditions. However, proliferation of the differentiated bPSC in the luminal layer significantly diminished with castration, suggesting inflammation may not maintain AR activity in stromal cells, as stromal cells deprived of androgen after castration could no longer provide paracrine growth factors essential for luminal proliferation. Taken together, we have discovered novel mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that contributes to prostate hyperplasia.

6.
Mol Omics ; 18(6): 480-489, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506630

RESUMEN

The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues. The cellular mechanisms related to this remarkable phenomenon, which is likely mediated by cell-to-cell communication, have been previously investigated with particular focus on the proteins and genes involved. In this study we report the optimization and results of a straightforward in vitro system where mouse prostate carcinoma (RM-1) cells were co-cultured for three days with preimplantation mouse embryos or spiked with deproteinated extracts from mouse blastocysts. Compared to controls, both treatments induced RM-1 cells to increase the expression of the SOX-2 gene, which is related to cellular stemness, as well as altered their lipid composition. Specific acyl-carnitines, diacylglycerols, phosphatidylglycerols, phosphatidylinositols, phosphatidylserines and cardiolipins selected using an elastic net model discriminated the treated RM-1 cells from controls. Note that the tumorigenic properties of the treated RM-1 cells were not evaluated in this research. Due to the nature of the lipids impacted in the treated RM-1 cells, we hypothesize that mitochondrial metabolism has been altered, and that small molecules both secreted from and present within the embryos might be involved in the induction of metabolic changes observed in the RM-1 cells. These molecules, which could influence cancer cell metabolism, may still be unknown (i.e. structure, role).


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Blastocisto/metabolismo , Técnicas de Cocultivo , Desarrollo Embrionario/genética , Lípidos , Masculino , Ratones
7.
Cancer Res Commun ; 2(10): 1104-1118, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969745

RESUMEN

SH2 containing protein tyrosine phosphatase-2 (SHP2) is recognized as a druggable oncogenic phosphatase that is expressed in both tumor cells and immune cells. How tumor cell-autonomous SHP2 contributes to an immunosuppressive tumor microenvironment (TME) and therapeutic failure of immune checkpoint blockades in metastatic breast cancer (MBC) is not fully understood. Herein, we utilized systemic SHP2 inhibition and inducible genetic depletion of SHP2 to investigate immune reprogramming during SHP2 targeting. Pharmacologic inhibition of SHP2 sensitized MBC cells growing in the lung to α-programmed death ligand 1 (α-PD-L1) antibody treatment via relieving T-cell exhaustion induced by checkpoint blockade. Tumor cell-specific depletion of SHP2 similarly reduced pulmonary metastasis and also relieved exhaustion markers on CD8+ and CD4+ cells. Both systemic SHP2 inhibition and tumor cell-autonomous SHP2 depletion reduced tumor-infiltrated CD4+ T cells and M2-polarized tumor-associated macrophages. Analysis of TCGA datasets revealed that phosphorylation of SHP2 is important for immune-cell infiltration, T-cell activation and antigen presentation. To investigate this mechanistically, we conducted in vitro T-cell killing assays, which demonstrated that pretreatment of tumor cells with FGF2 and PDGF reduced the cytotoxicity of CD8+ T cells in a SHP2-dependent manner. Both growth factor receptor signaling and three-dimensional culture conditions transcriptionally induced PD-L1 via SHP2. Finally, SHP2 inhibition reduced MAPK signaling and enhanced STAT1 signaling, preventing growth factor-mediated suppression of MHC class I. Overall, our findings support the conclusion that tumor cell-autonomous SHP2 is a key signaling node utilized by MBC cells to engage immune-suppressive mechanisms in response to diverse signaling inputs from TME. Significance: Findings present inhibition of SHP2 as a therapeutic option to limit breast cancer metastasis by promoting antitumor immunity.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Linfocitos T CD8-positivos , Antígeno B7-H1 , Terapia de Inmunosupresión , Transducción de Señal , Microambiente Tumoral , Melanoma Cutáneo Maligno
8.
Nat Commun ; 13(1): 2133, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440548

RESUMEN

Autoimmune (AI) diseases can affect many organs; however, the prostate has not been considered to be a primary target of these systemic inflammatory processes. Here, we utilize medical record data, patient samples, and in vivo models to evaluate the impact of inflammation, as seen in AI diseases, on prostate tissue. Human and mouse tissues are used to examine whether systemic targeting of inflammation limits prostatic inflammation and hyperplasia. Evaluation of 112,152 medical records indicates that benign prostatic hyperplasia (BPH) prevalence is significantly higher among patients with AI diseases. Furthermore, treating these patients with tumor necrosis factor (TNF)-antagonists significantly decreases BPH incidence. Single-cell RNA-seq and in vitro assays suggest that macrophage-derived TNF stimulates BPH-derived fibroblast proliferation. TNF blockade significantly reduces epithelial hyperplasia, NFκB activation, and macrophage-mediated inflammation within prostate tissues. Together, these studies show that patients with AI diseases have a heightened susceptibility to BPH and that reducing inflammation with a therapeutic agent can suppress BPH.


Asunto(s)
Enfermedades Autoinmunes , Hiperplasia Prostática , Prostatitis , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Línea Celular , Humanos , Hiperplasia , Inflamación/tratamiento farmacológico , Masculino , Ratones , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/patología
9.
J Thromb Haemost ; 19(1): 161-172, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064371

RESUMEN

Essentials Elimination of PDAC tumor cell PAR1 increased cytotoxic T cells and reduced tumor macrophages. PAR1KO PDAC cells are preferentially eliminated from growing tumors. Thrombin-PAR1 signaling in PDAC tumor cells drives an immunosuppressive gene signature. Csf2 and Ptgs2 are thrombin-PAR1 downstream immune suppressor genes in PDAC tumor cells. ABSTRACT: Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prothrombotic state and a lack of host antitumor immune responsiveness. Linking these two key features, we previously demonstrated that tumor-derived coagulation activity promotes immune evasion. Specifically, thrombin-protease-activated receptor-1 (PAR1) signaling in mouse PDAC cells drives tumor growth by evading cytotoxic CD8a+ cells. Methods Syngeneic mixed cell tumor growth, transcriptional analyses, and functional tests of immunosuppressive response genes were used to identify cellular and molecular immune evasion mechanisms mediated by thrombin-PAR-1 signaling in mouse PDAC tumor cells. Results Elimination of tumor cell PAR1 in syngeneic graft studies increased cytotoxic T lymphocyte (CTL) infiltration and decreased tumor-associated macrophages in the tumor microenvironment. Co-injection of PAR1-expressing and PAR1-knockout (PAR-1KO ) tumor cells into immunocompetent mice resulted in preferential elimination of PAR-1KO cells from developing tumors, suggesting that PAR1-dependent immune evasion is not reliant on CTL exclusion. Transcriptomics analyses revealed no PAR1-dependent changes in the expression of immune checkpoint proteins and no difference in major histocompatibility complex-I cell surface expression. Importantly, thrombin-PAR1 signaling in PDAC cells upregulated genes linked to immunosuppression, including Csf2 and Ptgs2. Functional analyses confirmed that both Csf2 and Ptgs2 are critical for PDAC syngeneic graft tumor growth and overexpression of each factor partially restored tumor growth of PAR1KO cells in immunocompetent mice. Conclusions Our results provide novel insight into the mechanisms of a previously unrecognized pathway coupling coagulation to PDAC immune evasion by identifying PAR1-dependent changes in the tumor microenvironment, a PAR1-driven immunosuppressive gene signature, and Csf2 and Ptgs2 as critical PAR1 downstream targets.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Ratones , Neoplasias Pancreáticas/genética , Receptor PAR-1/genética , Transducción de Señal , Trombina/metabolismo , Microambiente Tumoral
10.
Cancer Res ; 81(3): 671-684, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203700

RESUMEN

Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRß) within the TME and its restriction to the TME. This FRß+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRß as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors. SIGNIFICANCE: FRß serves as both a means to identify and target MDSCs and TAMs within the tumor, allowing for delivery of immunomodulatory compounds to tumor myeloid cells in a variety of cancers.


Asunto(s)
Receptor 2 de Folato/metabolismo , Células Mieloides/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Adenocarcinoma/patología , Adenocarcinoma/secundario , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Polaridad Celular , Técnicas de Reprogramación Celular , Citocinas/metabolismo , Ácido Fólico/farmacología , Humanos , Inmunomodulación/efectos de los fármacos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Mieloides/patología , Células Supresoras de Origen Mieloide/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Regulación hacia Arriba
11.
Cancer Immunol Res ; 8(12): 1542-1553, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33093218

RESUMEN

The effectiveness of immunotherapy as a treatment for metastatic breast cancer is limited due to low numbers of infiltrating lymphocytes in metastatic lesions. Herein, we demonstrated that adjuvant therapy using FIIN4, a covalent inhibitor of fibroblast growth factor receptor (FGFR), dramatically delayed the growth of pulmonary metastases in syngeneic models of metastatic breast cancer. In addition, we demonstrated in a syngeneic model of systemic tumor dormancy that targeting of FGFR enhanced the immunogenicity of the pulmonary tumor microenvironment through increased infiltration of CD8+ lymphocytes and reduced presence of myeloid suppressor cells. Similar impacts on immune cell infiltration were observed upon genetic depletion of FGFR1 in tumor cells, which suggested a direct influence of FGFR signaling on lymphocyte trafficking. Suppression of CD8+ lymphocyte infiltration was consistent with FGFR-mediated inhibition of the T-cell chemoattractant CXCL16. Initial attempts to concomitantly administer FIIN4 with immune checkpoint blockade failed due to inhibition of immune-mediated tumor cell killing via blockade of T-cell receptor signaling by FIIN4. However, this was overcome by using a sequential dosing protocol that consisted of FIIN4 treatment followed by anti-PD-L1. These data illustrate the complexities of combining kinase inhibitors with immunotherapy and provide support for further assessment of FGFR targeting as an approach to enhance antitumor immunity and improve immunotherapy response rates in patients with metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quimiocina CXCL16 , Femenino , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Receptor de Muerte Celular Programada 1/inmunología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Front Oncol ; 9: 1493, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039002

RESUMEN

There is a great need to improve the outlook for people facing urinary bladder cancer, especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50% of cases. Improved outcomes for patients with InvUC could come from advances on several fronts including emerging immunotherapies, targeted therapies, and new drug combinations; selection of patients most likely to respond to a given treatment based on molecular subtypes, immune signatures, and other characteristics; and prevention, early detection, and early intervention. Progress on all of these fronts will require clinically relevant animal models for translational research. The animal model(s) should possess key features that drive success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). Experimental animal models, while essential in bladder cancer research, do not possess these collective features to accurately predict outcomes in humans. These key features, however, are present in naturally-occurring InvUC in pet dogs. Canine InvUC closely mimics muscle-invasive bladder cancer in humans in cellular and molecular features, molecular subtypes, immune response patterns, biological behavior (sites and frequency of metastasis), and response to therapy. Thus, dogs can offer a highly relevant animal model to complement other models in research for new therapies for bladder cancer. Clinical treatment trials in pet dogs with InvUC are considered a win-win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. In addition, the high breed-associated risk for InvUC in dogs (e.g., 20-fold increased risk in Scottish Terriers) offers an unparalleled opportunity to test new strategies in primary prevention, early detection, and early intervention. This review will provide an overview of canine InvUC, summarize the similarities (and differences) between canine and human InvUC, and provide evidence for the expanding value of this canine model in bladder cancer research.

13.
Mol Cancer Res ; 17(6): 1253-1263, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30824526

RESUMEN

Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood. In these studies, single-cell mRNA sequencing was conducted to compare the transcriptomes of SULT2B1b knockdown (KD) versus Control KD LNCaP cells. Over 2,000 differentially expressed genes were identified along with alterations in numerous canonical pathways, including the death receptor signaling pathway. The studies herein demonstrate that SULT2B1b KD increases TNFα expression in prostate cancer cells and results in NF-κB activation in a TNF-dependent manner. More importantly, SULT2B1b KD significantly enhances TNF-mediated apoptosis in both TNF-sensitive LNCaP cells and TNF-resistant C4-2 cells. Overexpression of SULT2B1b in LNCaP cells also decreases sensitivity to TNF-mediated cell death, suggesting that SULT2B1b modulates pathways dictating the TNF sensitivity capacity of prostate cancer cells. Probing human prostate cancer patient datasets further supports this work by providing evidence that SULT2B1b expression is inversely correlated with TNF-related genes, including TNF, CD40LG, FADD, and NFKB1. Together, these data provide evidence that SULT2B1b expression in prostate cancer cells enhances resistance to TNF and may provide a growth advantage. In addition, targeting SULT2B1b may induce an enhanced therapeutic response to TNF treatment in advanced prostate cancer. IMPLICATIONS: These data suggest that SULT2B1b expression enhances resistance to TNF and may promote prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Sulfotransferasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Apoptosis/fisiología , Muerte Celular/fisiología , Línea Celular Tumoral , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Masculino , Subunidad p50 de NF-kappa B/metabolismo , Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA