Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36660954

RESUMEN

Our previous study identified a novel nitrile hydratase (NHase) with remarkable biotransformation activity toward adipamide during the production of 5-cyanovaleramide (5-CVAM), an important intermediate of herbicide and chemical raw material. Nevertheless, free NHase will face harsh conditions if they are applied directly in industrial processes. In this study, we, therefore, prepared Fe3(PO4)2 hybrid nanoflowers for NHase immobilization based on the protein-inorganic hybrid self-assembly by establishing a novel and facile method. The results showed that the NHase@Fe3(PO4)2 nanoflowers had significantly enhanced tolerance to the temperature ranging from 40°C to 60°C when compared with free NHase. The catalytic activity of NHase@Fe3(PO4)2 nanoflowers remained high in extreme pH environments such as weak acid (pH 5) and strong alkali (pH 10) environments. In addition, the storage stability and reusability of encapsulated NHase were also superior to that of free NHase. NHase@Fe3(PO4)2 nanoflowers had a notable feature of high substrate tolerance. We found NHase@Fe3(PO4)2 nanoflowers still had 65% activity as the adiponitrile concentration increased up to 200 mmol L-1, whereas free NHase almost lost their catalytic activity when the adiponitrile concentration was just 100 mmol L-1. All of these results clearly demonstrated that ferrous phosphate nanocrystals might offer a novel strategy for 5-CVAM production with nanobiocatalytic systems.


Asunto(s)
Hidroliasas , Hidroliasas/química , Hidroliasas/metabolismo
2.
Biochem Biophys Res Commun ; 536: 88-94, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33370718

RESUMEN

Tendon stem cells (TSCs) are a kind of progenitor cells found in tendon niches, which play a key role in the repair of tendon injuries. Exosomes that mediate cell communication are involved in physiological processes and various diseases, while the effect of exosomes derived from TSCs (TSC-exo) on TSCs is still unclear. The purpose of this study is to explore the effect of TSC-exo on TSCs. Analyzing the characteristics of TSC-exo, we found that the TSC-exo were enriched in a large amount of transforming growth factor ß (TGF ß) by western blotting. We also found that the TGF ß carried by TSC-exo can effectively accelerate the proliferation and migration of TSCs. We further found that TGF ß carried by TSC-exo can activate the TGF ß-Smad2/3 and the ERK1/2 signaling pathway in TSCs. Furthermore, matrix metalloenzyme 2 (MMP2), a downstream molecule of Smad2, is regulated by TGF ß carried by TSC-exo. Collectively, our findings provide molecular insights into TSC-exo and indicate that TSC-exo are a potential strategy for treating tendon injuries.


Asunto(s)
Movimiento Celular , Exosomas/metabolismo , Transducción de Señal , Células Madre/citología , Tendones/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proliferación Celular , Exosomas/ultraestructura , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratas Sprague-Dawley , Proteínas Smad/metabolismo
3.
Biointerphases ; 17(6): 061007, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456206

RESUMEN

Nitrile hydratase (NHase, EC 4.2.1.84) is an excellent biocatalyst that catalyzes the hydration of nitrile substances to their corresponding amides. Given its catalytic specificity and eco-friendliness, NHase has extensive applications in the chemical, pharmaceutical, and cosmetic industries. To improve the affinity between Rhodococcus erythropolis CCM2595-derived NHase (ReNHase) and adiponitrile, this study used a semirational design to improve the efficiency of ReNHase in catalyzing the generation of 5-cyanopentanamide from adiponitrile. Enzyme kinetics analysis showed that Km of the mutant ReNHaseB:G196Y was 3.265 mmol l-1, which was lower than that of the wild-type NHase. The affinity of the mutant ReNHaseB:G196Y to adiponitrile was increased by 36.35%, and the efficiency of the mutant ReNHaseB:G196Y in catalyzing adiponitrile to 5-cyanopentamide was increased by 10.11%. The analysis of the enzyme-substrate interaction showed that the hydrogen bond length of the mutant ReNHaseB:G196Y to adiponitrile was shortened by 0.59 Å, which enhanced the interaction between the mutant and adiponitrile and, thereby, increased the substrate affinity. Similarly, the structural analysis showed that the amino acid flexibility near the mutation site of ReNHaseB:G196Y was increased, which enhanced the binding force between the enzyme and adiponitrile. Our work may provide a new theoretical basis for the modification of substrate affinity of NHase and increase the possibility of industrial applications of the enzyme.


Asunto(s)
Hidroliasas , Rhodococcus , Hidroliasas/genética , Rhodococcus/genética
4.
J Pharm Sci ; 110(7): 2733-2742, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33639139

RESUMEN

B lymphoblastic leukemia (B-LL) is a clonal hematopoietic stem cell neoplasm derived from B-cell progenitors, which mainly occurs in children and adolescents and is one of the main causes of death from malignant tumors in this population. The surface marker CD19 is specifically expressed on the membrane of most malignant B-cells, which is widely used as a marker of B-LL antigen-specific immunotherapy. In this study, mesoporous titanium dioxide nanoparticles (MTNs)-based antibody drug delivery system was designed for B-LL treatment. Anti-CD19 monoclonal antibody was conjugated to PEGylated MTNs, and doxorubicin (DOX) was loaded in the nanoparticle. The CD19-PEG-MTN/DOX nanoparticle could recognize CD19+B-LL cell lines and induced them apoptosis, but nontoxic for the normal cells. Further, after treated with CD19-PEG-MTN/DOX nanoparticle, pro-apoptotic proteins Bax and Caspase-3 in KOPN 8 and NALM-6 cells were significantly upregulated, but anti-apoptotic proteins Bcl2, MCL-1, HSP 70, and BAG 3 were downregulated, which indicated the activation of the apoptosis pathway by the nanodrug. By contrast, CD19-PEG-MTN/DOX didn't play a part on CD19-cell line U937. Besides, the cytotoxicity of CD19-PEG-MTN/DOX was low with good biocompatibility. Collectively, CD19-PEG-MTN/DOX is a promising antitumor nanodrug for the treatment of B-LL.


Asunto(s)
Nanopartículas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Antígenos CD19 , Línea Celular Tumoral , Niño , Doxorrubicina/farmacología , Humanos , Dióxido de Silicio , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA