Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Circ Res ; 135(6): 651-667, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082138

RESUMEN

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isoproterenol , Miocitos Cardíacos , beta-Arrestina 1 , Animales , Fosforilación , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Isoproterenol/toxicidad , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacología , Agonistas Adrenérgicos beta/toxicidad , Células Cultivadas , Transducción de Señal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Humanos
2.
J Intern Med ; 296(3): 291-297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39073192

RESUMEN

BACKGROUND: Currently, pathophysiological mechanisms of post-acute sequelae of coronavirus disease-19-cardiovascular syndrome (PASC-CVS) remain unknown. METHODS AND RESULTS: Patients with PASC-CVS exhibited significantly higher circulating levels of severe acute respiratory syndrome-coronavirus-2 spike protein S1 than the non-PASC-CVS patients and healthy controls. Moreover, individuals with high plasma spike protein S1 concentrations exhibited elevated heart rates and normalized low frequency, suggesting cardiac ß-adrenergic receptor (ß-AR) hyperactivity. Microscale thermophoresis (MST) assay revealed that the spike protein bound to ß1- and ß2-AR, but not to D1-dopamine receptor. These interactions were blocked by ß1- and ß2-AR blockers. Molecular docking and MST assay of ß-AR mutants revealed that the spike protein interacted with the extracellular loop 2 of both ß-ARs. In cardiomyocytes, spike protein dose-dependently increased the cyclic adenosine monophosphate production with or without epinephrine, indicating its allosteric effects on ß-ARs. CONCLUSION: Severe acute respiratory syndrome-coronavirus-2 spike proteins act as an allosteric ß-AR agonist, leading to cardiac ß-AR hyperactivity, thus contributing to PASC-CVS.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/complicaciones , COVID-19/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Síndrome Post Agudo de COVID-19 , Anciano , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Agonistas Adrenérgicos beta/uso terapéutico
3.
Dig Dis Sci ; 69(4): 1263-1273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451429

RESUMEN

BACKGROUND: A grim prognosis of pancreatic cancer (PCa) was attributed to the difficulty in early diagnosis of the disease. AIMS: Identifying novel biomarkers for early detection of PCa is thus urgent to improve the overall survival rates of patients. METHODS: The study was performed firstly by identification of candidate microRNAs (miRNAs) in formalin-fixed, paraffin-embedded tissues using microarray profiles, and followed by validation in a serum-based cohort study to assess clinical utility of the candidates. In the cohorts, a total of 1273 participants from four centers were retrospectively recruited as two cohorts including training and validation cohort. The collected serum specimens were analyzed by real-time polymerase chain reaction. RESULTS: We identified 27 miRNAs expressed differentially in PCa tissues as compared to the benign. Of which, the top-four was selected as a panel whose diagnostic efficacy was fully assessed in the serum specimens. The panel exhibited superior to CA19-9, CA125, CEA and CA242 in discriminating patients with early stage PCa from healthy controls or non-PCa including chronic pancreatitis as well as pancreatic cystic neoplasms, with the area under the curves (AUC) of 0.971 (95% CI 0.956-0.987) and 0.924 (95% CI 0.899-0.949), respectively. Moreover, the panel eliminated interference from other digestive tumors with a specificity of 90.2%. CONCLUSIONS: A panel of four serum miRNAs was developed showing remarkably discriminative ability of early stage PCa from either healthy controls or other pancreatic diseases, suggesting it may be developed as a novel, noninvasive approach for early screening of PCa in clinic.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , Estudios Retrospectivos , Estudios de Cohortes , Biomarcadores de Tumor , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología
4.
Adv Exp Med Biol ; 1377: 109-118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35575924

RESUMEN

In this chapter, we summarize the relationship between circulating high-density lipoprotein (HDL) and atherosclerotic cardiovascular disease (ASCVD). HDL acts in many types of cells, such as endothelial cell, macrophage, T lymphocyte, etc. Recently, novel HDL-related therapies have been developed to treat ASCVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Aterosclerosis/terapia , Enfermedades Cardiovasculares/terapia , Humanos , Lipoproteínas HDL , Factores de Riesgo
5.
Adv Exp Med Biol ; 1377: 153-161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35575928

RESUMEN

In previous chapters, we know that high-density lipoproteins (HDLs) could act at multiple cell lines and then trigger intracellular molecular pathway to prevent several metabolic diseases. Besides the classic genes regulating cholesterol efflux and reverse cholesterol transport (RCT), microRNAs (miRNAs) could also affect HDLs biogenesis, metabolism, and functions. This chapter summarizes the miRNAs, which regulate HDLs functions in table. In addition, HDLs are good vectors for miRNAs. They could carry miRNAs in circulation and take them into several cells such as macrophages and endothelial cells. Complete understanding of the miRNAs associated with HDL regulation would give us broader insights to prevent and treat metabolic diseases.


Asunto(s)
MicroARNs , Transporte Biológico/genética , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
6.
Eur Heart J ; 42(42): 4373-4385, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34534287

RESUMEN

AIMS: Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS: We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION: Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.


Asunto(s)
Aneurisma de la Aorta , Animales , Biomarcadores , Disección , Humanos , Metabolómica , Ratones , Ácido Succínico
7.
Nano Lett ; 21(8): 3487-3494, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33848175

RESUMEN

Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.


Asunto(s)
Nanopartículas , Colorantes Fluorescentes , Rayos Láser , Microscopía Fluorescente , Dióxido de Silicio
8.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216157

RESUMEN

Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein-protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Plantas/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Variación Genética , Gossypium/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo
9.
iScience ; 27(10): 111018, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39429785

RESUMEN

Heart failure (HF) is a global concern, particularly HF with preserved ejection fraction (HFpEF), lacking effective treatments. Understanding the differences of metabolic profiles between HFpEF and HFrEF (heart failure with reduced ejection fraction) patients is crucial for therapeutic advancements. In this study, pseudotargeted metabolomics was employed to analyze for disparities of plasma metabolic profiles between HFpEF and HFrEF in two cohorts: discovery (n = 514) and validation (n = 3368). Plasma-free carnitine levels were significant changed in HF patients. A non-linear and U-shaped (for HFpEF) or J-shaped (for HFrEF) association between circulating free carnitine levels and the composite risk of cardiac events were observed. Interestingly, HFpEF patients with low free carnitine (≤40.18 µmol/L) displayed a poorer survival, contrasting with HFrEF where higher levels (≥35.67 µmol/L) were linked to poorer outcomes, indicating distinct metabolism pathways. In conclusion, these findings offer insights into HFpEF metabolic profiles, suggesting potential therapeutic targets.

10.
Front Microbiol ; 14: 1259510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795297

RESUMEN

Objective: In past decades, the role of high-risk HPV (HR-HPV) infection in cancer pathogenesis has been extensively studied. The viral E7 protein expressed in pre-malignant cells has been identified as an ideal target for immunological intervention. However, the cultivation of HPV in vitro remains a significant challenge, as well as the lack of methods for expressing the HPV E7 protein and generating replication-competent recombinant viral particles, which posed a major obstacle to further exploration of the function and carcinogenic mechanisms of the E7 oncoprotein. Therefore, it is imperative to investigate novel methodologies to construct replication-competent recombinant viral particles that express the HPV E7 protein to facilitate the study of its function. Methods: We initiated the construction of recombinant viral particles by utilizing the ccdB-Kan forward/reverse screening system in conjunction with the Red/ExoCET recombinant system. We followed the infection of C33A cells with the obtained recombinant virus to enable the continuous expression of HPV16 E7. Afterwards, the total RNA was extracted and performed transcriptome sequencing using RNA-Seq technology to identify differentially expressed genes associated with HPV-induced oncogenicity. Results: We successfully established replicative recombinant viral particles expressing HPV16 E7 stably and continuously. The C33A cells were infected with recombinant viral particles to achieve overexpression of the E7 protein. Subsequently, RNA-Seq analysis was conducted to assess the changes in host cell gene expression. The results revealed an upregulation of the CD36 gene, which is associated with the HPV-induced oncogenic pathways, including PI3K-Akt and p53 signaling pathway. qRT-PCR analysis further identified that the upregulation of the CD36 gene due to the expression of HPV16 E7. Conclusion: The successful expression of HPV16 E7 in cells demonstrates that the replicated recombinant virus retains the replication and infection abilities of Ad4, while also upregulating the CD36 gene involved in the PI3K-Akt signaling and p53 pathways, thereby promoting cell proliferation. The outcome of this study provides a novel perspective and serves as a solid foundation for further exploration of HPV-related carcinogenesis and the development of replicative HPV recombinant vaccines capable of inducing protective immunity against HPV.

11.
Signal Transduct Target Ther ; 8(1): 55, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737432

RESUMEN

Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.


Asunto(s)
Aneurisma de la Aorta Abdominal , Rotura de la Aorta , Animales , Humanos , Aneurisma de la Aorta Abdominal/cirugía , Rotura de la Aorta/genética , Rotura de la Aorta/terapia , Estudios de Cohortes
12.
Front Mol Biosci ; 10: 1180537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214338

RESUMEN

Kawasaki disease (KD) is a childhood vasculitis disease that is difficult to diagnose, and there is an urgent need for the identification of accurate and specific biomarkers. Here, we aimed to investigate metabolic alterations in patients with KD to determine novel diagnostic and prognostic biomarkers for KD. To this end, we performed untargeted metabolomics and found that several metabolic pathways were significantly enriched, including amino acid, lipid, and tryptophan metabolism, the latter of which we focused on particularly. Tryptophan-targeted metabolomics was conducted to explore the role of tryptophan metabolism in KD. The results showed that Trp and indole acetic acid (IAA) levels markedly decreased, and that l-kynurenine (Kyn) and kynurenic acid (Kyna) levels were considerably higher in patients with KD than in healthy controls. Changes in Trp, IAA, Kyn, and Kyna levels in a KD coronary arteritis mouse model were consistent with those in patients with KD. We further analyzed public single-cell RNA sequencing data of patients with KD and revealed that their peripheral blood mononuclear cells showed Aryl hydrocarbon receptor expression that was remarkably higher than that of healthy children. These results suggest that the Trp metabolic pathway is significantly altered in KD and that metabolic indicators may serve as novel diagnostic and therapeutic biomarkers for KD.

13.
Sci Bull (Beijing) ; 68(11): 1162-1175, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210332

RESUMEN

Intracranial aneurysm is the leading cause of nontraumatic subarachnoid hemorrhage. Evaluating the unstable (rupture and growth) risk of aneurysms is helpful to guild decision-making for unruptured intracranial aneurysms (UIA). This study aimed to develop a model for risk stratification of UIA instability. The UIA patients from two prospective, longitudinal multicenter Chinese cohorts recruited from January 2017 to January 2022 were set as the derivation cohort and validation cohort. The primary endpoint was UIA instability, comprising aneurysm rupture, growth, or morphology change, during a 2-year follow-up. Intracranial aneurysm samples and corresponding serums from 20 patients were also collected. Metabolomics and cytokine profiling analysis were performed on the derivation cohort (758 single-UIA patients harboring 676 stable UIAs and 82 unstable UIAs). Oleic acid (OA), arachidonic acid (AA), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were significantly dysregulated between stable and unstable UIAs. OA and AA exhibited the same dysregulated trends in serums and aneurysm tissues. The feature selection process demonstrated size ratio, irregular shape, OA, AA, IL-1ß, and TNF-α as features of UIA instability. A machine-learning stratification model (instability classifier) was constructed based on radiological features and biomarkers, with high accuracy to evaluate UIA instability risk (area under curve (AUC), 0.94). Within the validation cohort (492 single-UIA patients harboring 414 stable UIAs and 78 unstable UIAs), the instability classifier performed well to evaluate the risk of UIA instability (AUC, 0.89). Supplementation of OA and pharmacological inhibition of IL-1ß and TNF-α could prevent intracranial aneurysms from rupturing in rat models. This study revealed the markers of UIA instability and provided a risk stratification model, which may guide treatment decision-making for UIAs.


Asunto(s)
Aneurisma Intracraneal , Humanos , Animales , Ratas , Aneurisma Intracraneal/diagnóstico , Estudios Prospectivos , Pueblos del Este de Asia , Factor de Necrosis Tumoral alfa , Medición de Riesgo
14.
Leuk Lymphoma ; 64(1): 178-187, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260485

RESUMEN

Recent reports discovered that red blood cells (RBCs) could scavenge cell-free mitochondrial DNA (mtDNA), which drives the accelerated erythrophagocytosis and innate immune activation characterized by anemia and inflammatory cytokine production. However, the clinical value of the circulating mtDNA copy number alterations in hematologic malignancies is poorly understood. Our data showed that in comparison to healthy group, the patients group had significantly higher mtDNA and histone H4 levels. Moreover, we observed that RBC-bound mtDNA and histone H4 were negatively correlated with hemoglobin in patients. In addition, cytokines and chemokines levels in patients differed significantly from normal controls (21 higher, 7 lower). Our study suggested that both circulating mtDNA and histone H4 were associated with anemia in hematologic malignancies, which helps to further understand the potential mechanism of anemia development in patients with hematologic malignancies. This information may play a vital role in the specific therapeutic interventions for leukemia in the future.


Asunto(s)
Anemia , Neoplasias Hematológicas , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/uso terapéutico , Histonas , Anemia/diagnóstico , Anemia/etiología , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Mitocondrias
15.
Neuron ; 111(22): 3634-3649.e7, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683629

RESUMEN

Blood-brain barrier (BBB) function deteriorates during aging, contributing to cognitive impairment and neurodegeneration. It is unclear what drives BBB leakage in aging and how it can be prevented. Using single-nucleus transcriptomics, we identified decreased connexin 43 (CX43) expression in cadherin-5+ (Cdh5+) cerebral vascular cells in naturally aging mice and confirmed it in human brain samples. Global or Cdh5+ cell-specific CX43 deletion in mice exacerbated BBB dysfunction during aging. The CX43-dependent effect was not due to its canonical gap junction function but was associated with reduced NAD+ levels and mitochondrial dysfunction through NAD+-dependent sirtuin 3 (SIRT3). CX43 interacts with and negatively regulates poly(ADP-ribose) polymerase 1 (PARP1). Pharmacologic inhibition of PARP1 by olaparib or nicotinamide mononucleotide (NMN) supplementation rescued NAD+ levels and alleviated aging-associated BBB leakage. These findings establish the endothelial CX43-PARP1-NAD+ pathway's role in vascular aging and identify a potential therapeutic strategy to combat aging-associated BBB leakage with neuroprotective implications.


Asunto(s)
Conexina 43 , NAD , Animales , Humanos , Ratones , Envejecimiento/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
16.
Front Cell Infect Microbiol ; 12: 926348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782114

RESUMEN

Cervical cancer is one of the most common gynecological malignancies and is related to human papillomavirus (HPV) infection, especially high-risk type HPV16 and HPV18. Aberrantly expressed genes are involved in the development of cervical cancer, which set a genetic basis for patient prognosis. In this study, we identified a set of aberrantly expressed key genes from The Cancer Genome Atlas (TCGA) database, which could be used to accurately predict the survival rate of patients with cervical squamous cell carcinoma (CESC). A total of 3,570 genes that are differentially expressed between normal and cancerous samples were analyzed by the algorithm of weighted gene co-expression network analysis (WGCNA): 1,606 differentially expressed genes (DEGs) were upregulated, while 1,964 DEGs were downregulated. Analysis of these DEGs divided them into 7 modules including 76 hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis revealed a significant increase of genes related to cell cycle, DNA replication, p53 signaling pathway, cGMP-PKG signaling pathway, and Fanconi anemia (FA) pathway in CESC. These biological activities are previously reported to associate with cervical cancer or/and HPV infection. Finally, we highlighted 5 key genes (EMEMP2, GIMAP4, DYNC2I2, FGF13-AS1, and GIMAP1) as robust prognostic markers to predict patient's survival rate (p = 3.706e-05) through univariate and multivariate regression analyses. Thus, our study provides a novel option to set up several biomarkers for cervical cancer prognosis and anticancer drug targets.


Asunto(s)
Biología Computacional , Neoplasias del Cuello Uterino , Femenino , Proteínas de Unión al GTP , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Pronóstico , Neoplasias del Cuello Uterino/genética
17.
Genes (Basel) ; 13(4)2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456460

RESUMEN

Breast cancer is one of the most common malignant tumors in women worldwide. Early diagnosis, treatment, and prognosis of breast cancer are global challenges. Identification of valid predictive diagnosis and prognosis biomarkers and drug targets are crucial for breast cancer prevention. This study characterizes differentially expressed genes (DEGs) based on the TCGA database by using DESeq2, edgeR, and limma. A total of 2032 DEGs, including 1026 up-regulated genes and 1006 down-regulated genes were screened. Followed with WGCNA, PPI analysis, GEPIA 2, and HPA database verification, thirteen hub genes including CDK1, BUB1, BUB1B, CDC20, CCNB2, CCNB1, KIF2C, NDC80, CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE were obtained, and they may serve as potential therapeutic targets of breast cancer. Especially, overexpression of CCNB1 and PLK1 are strongly associated with the low survival rate of breast cancer patients, demonstrating their potentiality as prognostic markers. Moreover, CCNB1 and PLK1 are highly expressed in all breast cancer stages, suggesting that they could be further studied as potential drug targets. Taken together, our study highlights CCNB1 and PLK1 as potential anti-breast cancer drug targets and prognostic markers.


Asunto(s)
Neoplasias de la Mama , Biología Computacional , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genes cdc , Humanos , Pronóstico , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1
18.
Front Cell Infect Microbiol ; 12: 1007950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425786

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are highly aggressive tumors with rapid progression and poor prognosis. Human papillomavirus (HPV) infection has been identified as one of the most important carcinogens for HNSCC. As an early event in HNSCC, infection with HPV leads to altered immune profiles in the tumor microenvironment (TME). The TME plays a key role in the progression and transformation of HNSCC. However, the TME in HNSCC is a complex and heterogeneous mix of tumor cells, fibroblasts, different types of infiltrating immune cells, and extracellular matrix. Biomarkers relevant to the TME, and the biological role of these biomarkers, remain poorly understood. To this end, we performed comprehensive analysis of the RNA sequencing (RNA-Seq) data from tumor tissue of 502 patients with HNSCC and healthy tissue of 44 control samples. In total, we identified 4,237 differentially expressed genes, including 2,062 upregulated and 2,175 downregulated genes. Further in-depth bioinformatic analysis suggested 19 HNSCC tumor tissue-specific genes. In the subsequent analysis, we focused on the biomarker candidates shown to be significantly associated with unfavorable patient survival: ITGA5, PLAU, PLAUR, SERPINE1, TGFB1, and VEGFC. We found that the expression of these genes was negatively regulated by DNA methylation. Strikingly, all of these potential biomarkers are profoundly involved in the activation of the epithelial-mesenchymal transition (EMT) pathway in HNSCCs. In addition, these targets were found to be positively correlated with the immune invasion levels of CD4+ T cells, macrophages, neutrophils, and dendritic cells, but negatively correlated with B-cell infiltration and CD8+ T-cell invasion. Notably, our data showed that the expression levels of ITGA5, PLAU, PLAUR, SERPINE1, and TGFB1 were significantly overexpressed in HPV-positive HNSCCs compared to normal controls, indicating the potential role of these biomarkers as transformation and/or malignant progression markers for HNSCCs in patients with HPV infection. Taken together, the results of our study propose ITGA5, PLAU, PLAUR, SERPINE1, and TGFB1 as potential prognostic biomarkers for HNSCCs, which might be involved in the HPV-related TME remodeling of HNSCC. Our findings provide important implications for the development and/or improvement of patient stratification and customized immunotherapies in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/complicaciones , Microambiente Tumoral/genética , Infecciones por Papillomavirus/genética , Biología Computacional , Papillomaviridae/genética , Pronóstico
19.
Adv Sci (Weinh) ; 8(4): 2002228, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643788

RESUMEN

Radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) often leads to aggressive local recurrence and increased metastasis, and vascular integrity and platelets are implicated in tumor metastasis. However, whether interactions between endothelial cells and platelets induce endothelial permeability in HCC after insufficient RFA remains unclear. Here, significantly increased CD62P-positive platelets and sP-selectin in plasma are observed in HCC patients after RFA, and tumor-associated endothelial cells (TAECs) activate platelets and are susceptible to permeability after heat treatment in the presence of platelets in vitro. In addition, tumors exhibit enhanced vascular permeability after insufficient RFA in mice; heat treatment promotes platelets-induced endothelial permeability through vascular endothelial (VE)-cadherin, and ICAM-1 upregulation in TAECs after heat treatment results in platelet activation and increased endothelial permeability in vitro. Moreover, the binding interaction between upregulated ICAM-1 and Ezrin downregulates VE-cadherin expression. Furthermore, platelet depletion or ICAM-1 inhibition suppresses tumor growth and metastasis after insufficient RFA in an orthotopic tumor mouse model, and vascular permeability decreases in ICAM-1-/- mouse tumor after insufficient RFA. The findings suggest that ICAM-1 activates platelets and promotes endothelial permeability in TAECs through VE-cadherin after insufficient RFA, and anti-platelet and anti-ICAM-1 therapy can be used to prevent progression of HCC after insufficient RFA.

20.
Adv Mater ; 32(38): e2000037, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32803803

RESUMEN

Vulnerable atherosclerotic (AS) plaque is the major cause of cardiovascular death. However, clinical methods cannot directly identify the vulnerable AS plaque at molecule level. Herein, osteopontin antibody (OPN Ab) and NIR fluorescence molecules of ICG co-assembled Ti3 C2 nanosheets are reported as an advanced nanoprobe (OPN Ab/Ti3 C2 /ICG) with enhanced photoacoustic (PA) performance for direct and non-invasive in vivo visual imaging of vulnerable AS plaque. The designed OPN Ab/Ti3 C2 /ICG nanoprobes successfully realize obvious NIR fluorescence imaging toward foam cells as well as the vulnerable AS plaque slices. After intravenous injection of OPN Ab/Ti3 C2 /ICG nanoprobes into AS model mice, in vivo imaging results show a significantly enhanced PA signal in the aortic arch accumulated with vulnerable plaque, well indicating the remarkable feasibility of OPN Ab/Ti3 C2 /ICG nanoprobes to distinguish the vulnerable AS plaque. The proposed OPN Ab/Ti3 C2 /ICG nanoprobes not only overcome the clinical difficulty to differentiate vulnerable plaque, but also achieve the non-invasively specific in vivo imaging of vulnerable AS plaque at molecule level, greatly promoting the innovation of cardiovascular diagnosis technology.


Asunto(s)
Nanotecnología/métodos , Técnicas Fotoacústicas/métodos , Placa Aterosclerótica/diagnóstico por imagen , Animales , Ratones , Nanopartículas/química , Osteopontina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA