Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 48, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459558

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PC) is an aggressive malignancy with limited treatment options. The poor prognosis primarily stems from late-stage diagnosis and when the disease has become therapeutically challenging. There is an urgent need to identify specific biomarkers for cancer subtyping and early detection to enhance both morbidity and mortality outcomes. The addition of the EGFR tyrosine kinase inhibitor (TKI), erlotinib, to gemcitabine chemotherapy for the first-line treatment of patients with advanced pancreatic cancer slightly improved outcomes. However, restricted clinical benefits may be linked to the absence of well-characterized criteria for stratification and dependable biomarkers for the prediction of treatment effectiveness. METHODS AND RESULTS: We examined the levels of various cancer hallmarks and identified glycolysis as the primary risk factor for overall survival in PC. Subsequently, we developed a glycolysis-related score (GRS) model to accurately distinguish PC patients with high GRS. Through in silico screening of 4398 compounds, we discovered that erlotinib had the strongest therapeutic benefits for high-GRS PC patients. Furthermore, we identified ARNTL2 as a novel prognostic biomarker and a predictive factor for erlotinib treatment responsiveness in patients with PC. Inhibition of ARNTL2 expression reduced the therapeutic efficacy, whereas increased expression of ARNTL2 improved PC cell sensitivity to erlotinib. Validation in vivo using patient-derived xenografts (PDX-PC) with varying ARNTL2 expression levels demonstrated that erlotinib monotherapy effectively halted tumor progression in PDX-PC models with high ARNTL2 expression. In contrast, PDX-PC models lacking ARNTL2 did not respond favorably to erlotinib treatment. Mechanistically, we demonstrated that the ARNTL2/E2F1 axis-mediated cellular glycolysis sensitizes PC cells to erlotinib treatment by activating the PI3K/AKT signaling pathway. CONCLUSIONS: Our investigations have identified ARNTL2 as a novel prognostic biomarker and predictive indicator of sensitivity. These results will help to identify erlotinib-responsive cases of PC and improve treatment outcomes. These findings contribute to the advancement of precision oncology, enabling more accurate and targeted therapeutic interventions.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Factores de Transcripción ARNTL/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Medicina de Precisión , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Eur J Nucl Med Mol Imaging ; 51(2): 380-394, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792026

RESUMEN

PURPOSE: The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models. METHODS: The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2. RESULTS: Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models. CONCLUSION: In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.


Asunto(s)
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Radioisótopos de Galio , Inmunohistoquímica , Neoplasias Pancreáticas/metabolismo , Tomografía de Emisión de Positrones/métodos
3.
Cancer Cell Int ; 22(1): 380, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457011

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), as a highly lethal malignancy with high mortality, lacks of effective treatment. Canonical therapeutic targets in PDAC demand further verification among which HER2 receptor tyrosine kinase inhibitor pyrotinib as treatment targets has not be decided. METHODS: Anti-PDAC efficacy of pyrotinib was evaluated both in vitro and in vivo using both cell lines and patient-derived xenografts. By screening a large-scale library of 1453 compounds, we identified HDACs/mTOR inhibitor 1 as a promising candidate to synergize with pyrotinib. The combination therapy was evaluated in vitro and in vivo in multiple cell lines and animal models. Furthermore, RNA-seq analysis was performed to reveal the latent molecular mechanism of combination therapy. RESULTS: In our study, pyrotinib monotherapy was found to be inefficient to anti-PDAC which exhibited limited anti-proliferation effect in vitro and in vivo. Through therapy combined with HDACs/mTOR inhibitor 1, pyrotinib triggered intense apoptosis in PDAC both in cell lines and animal models. Mechanistic analyses revealed that mutant P53 degradation mediated by HDAC inhibition synergized with HER2 and mTOR inhibition. CONCLUSIONS: In conclusion, identification of HDACs/mTOR inhibitor as a synergistic inhibitor, provides a potent therapeutic strategy that targets HER2-positive pancreatic cancer.

4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613599

RESUMEN

Cancer-associated fibroblasts (CAFs), a prominent population of stromal cells, play a crucial role in tumor progression, prognosis, and treatment response. However, the relationship among CAF-based molecular signatures, clinical outcomes, and tumor microenvironment infiltration remains largely elusive in pancreatic cancer (PC). Here, we collected multicenter PC data and performed integrated analysis to investigate the role of CAF-related genes (CRGs) in PC. Firstly, we demonstrated that α-SMA+ CAFs were the most prominent stromal components and correlated with the poor survival rates of PC patients in our tissue microarrays. Then, we discriminated two diverse molecular subtypes (CAF clusters A and B) and revealed the significant differences in the tumor immune microenvironment (TME), four reported CAF subpopulations, clinical characteristics, and prognosis in PC samples. Furthermore, we analyzed their association with the immunotherapy response of PC patients. Lastly, a CRG score was constructed to predict prognosis, immunotherapy responses, and chemosensitivity in pancreatic cancer patients. In summary, these findings provide insights into further research targeting CAFs and their TME, and they pave a new road for the prognosis evaluation and individualized treatment of PC patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Humanos , Fibroblastos Asociados al Cáncer/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Células del Estroma/patología , Inmunoterapia , Microambiente Tumoral/genética , Neoplasias Pancreáticas
5.
BMC Cancer ; 21(1): 672, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098895

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that lack of effective therapeutic drugs. K-001 is an oral antitumor drug made from active ingredients of marine microorganisms. The current study aimed to evaluate safety and antitumor activity of K-001 in patients with advanced PDAC. METHODS: In this phase I, open-label trial, patients with advanced PDAC were recruited to a dose-escalation study in a standard 3 + 3 design. K-001 was administered twice daily in four-week cycles, and dose escalation from 1350 mg to 2160 mg was evaluated twice daily. Physical examination and laboratory tests were done at screening and then weekly. The safety, dose-limiting toxicity (DLT), and maximum tolerated dose (MTD) of K-001 were assessed while tumor response was estimated by Response Evaluation Criteria in Solid Tumor (RECIST). RESULTS: Eighteen patients with advanced PDAC were screened, and twelve eligible patients were analyzed in the study. No DLT was observed. Totally, 47 adverse events (AEs) presented, and 14 drug-related AEs were reported in 7 patients, including 8 grade 1 events (57.1%) and 6 grade 2 events (42.9%). There was no grade 3 or 4 drug-related AE. In these 14 drug-related AEs, the most frequent ones were dyspepsia (21.4%), followed by flatulence, constipation, and hemorrhoid bleeding (above 10% of each). Among all 12 patients, 10 patients (83.3%) maintained stable disease (SD), and 2 patients (16.7%) had progressive disease (PD). The objective response rate (ORR) was 0% and the disease control rate (DCR) was 83.3%. CONCLUSIONS: K-001 manifests satisfactory safety and tolerability, as well as meaningful antitumor activity in advanced PDAC patients. Further evaluation of K-001 in phase II/III appears warranted. TRIAL REGISTRATION: NCT02720666 . Registered 28 Match 2016 - Retrospectively registered.


Asunto(s)
Organismos Acuáticos/química , Productos Biológicos/efectos adversos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Peptidoglicano/efectos adversos , Anciano , Productos Biológicos/administración & dosificación , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Peptidoglicano/administración & dosificación , Criterios de Evaluación de Respuesta en Tumores Sólidos , Resultado del Tratamiento
6.
BMC Cancer ; 21(1): 818, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34266407

RESUMEN

BACKGROUND: Gemcitabine plus platinum as the first-line chemotherapy for cholangiocarcinoma (CCA) has limited efficacy. The aim of this study was to evaluate the effectiveness of modified FOLFIRINOX (mFOLFIRINOX) compared to that of gemcitabine plus oxaliplatin (Gemox) for patients with locally advanced or metastatic CCA. METHODS: From January 2016 to December 2019, consecutive patients who were diagnosed with locally advanced or metastatic CCA were treated with either mFOLFIRINOX or Gemox as a first-line chemotherapy. The main endpoint was Progression free survival (PFS). The second endpoints were Overall survival (OS), Disease control rate (DCR) and incidence of severe toxicity (grade 3-4). Tumors were evaluated at baseline and thence every 4-6 weeks. The study was designed and carried out in accordance with the principles of the declaration of Helsinki, approved by the Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine (XHEC-D-2020-154) and registered with ClinicalTrials.gov , number NCT04305288 (registration date: 12/03/2020). RESULTS: Of 49 patients in this study, 27 were in the FOLFIRINOX regimen group and 22 in the Gemox regimen group. There were no significant differences between groups in baseline characteristics. The DCR was 77.8% in the mFOLFIRINOX group and 63.5% in the Gemox group. The corresponding median PFS was 9.9 months (95% confidence interval [CI], 7.3-12.4) in the mFOLFIRINOX group versus 6.4 months (95% CI,3.6-9.2, p = 0.040) in the Gemox group. The corresponding median OS was 15.7 months (95% CI, 12.5-19.0) versus 12.0 months (95% CI, 9.3-14.8, p = 0.099). Significantly more grade 3-4 vomiting occurred in the mFOLFIRINOX than the Gemox groups (7 (25.9%) vs 1 (4.5%), p = 0.044). CONCLUSIONS: First-line mFOLFIRINOX offered more promising results in patients with advanced or metastatic CCA.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Colangiocarcinoma/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Oxaliplatino/uso terapéutico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Colangiocarcinoma/patología , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Leucovorina/farmacología , Leucovorina/uso terapéutico , Masculino , Persona de Mediana Edad , Oxaliplatino/farmacología , Estudios Retrospectivos , Gemcitabina
7.
Cancer Cell Int ; 20: 55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32099528

RESUMEN

BACKGROUND: The bromodomain and extra-terminal domain (BET) family of proteins, especially BRD4 play an important role in epigenetic regulation, and are essential for cell survival and also are promising anticancer targets. This study aims to analyze the effect of BRD4 on the cell growth and progression of pancreatic cancer and novel mechanisms involved. METHODS: Expression of BRD4 in pancreatic cancer and paired adjacent noncancerous tissues from 76 patients was analyzed by western blotting, immunohistochemistry, and real time PCR. Its correlation with the clinicopathological characteristics and prognosis of pancreatic cancer patients was analyzed. The effects of BRD4 on the cell proliferation were detected by colony formation assay and sulforhodamine B assay. Migration and invasion were determined by Transwell assays, and the effect of BRD4 on subcutaneous tumor formation was verified in nude mice. Cell cycle analysis was detected by flow cytometry. The potential downstream targets of BRD4 and related molecular mechanisms were clarified by RNA sequencing, chromatin immunoprecipitation and dual luciferase reporter assay. RESULTS: BRD4 was overexpressed in pancreatic cancer. Biological results showed that BRD4 functioned as tumor promoter, facilitated cell proliferation, migration and invasion in vitro and in vivo. Further, caveolin-2 was selected as the downstream gene of BRD4 by RNA sequencing. Caveolin-2 overexpression can partially reverse the decreased cell growth ability caused by BRD4 knockdown, but did not affect cell migration and invasion. Chromatin immunoprecipitation assay and dual luciferase reporter assay revealed BRD4 could bind to the promoter region of caveolin-2 and upregulate caveolin-2 expression. Clinical data further indicated a positive correlation between BRD4 and caveolin-2 expression. BRD4 (high)/caveolin-2 (high) correlated with shorter overall survival of patients with pancreatic cancer. Multivariate analysis revealed that both BRD4 and caveolin-2 were independent factors. CONCLUSIONS: Our findings reveal the oncogenic effects of BRD4 in pancreatic cancer and elucidate a possible mechanism by which BRD4 and caveolin-2 act to enhance cell growth. Targeting the BRD4-caveolin-2 interaction by development of BET inhibitors will be a therapeutic strategy for pancreatic cancer.

8.
BMC Cancer ; 18(1): 1032, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352575

RESUMEN

BACKGROUND: It was demonstrated that long non-coding RNAs occupied an important position in tumor pathogenesis and progression. We have previously found that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) promotes cell proliferation and metastases in pancreatic ductal adenocarcinoma (PDAC). The present study was aimed to discuss the underlying mechanisms. METHODS: Bioinformatics method was used to identify the miRNA target of MALAT-1. Expressions of relative genes were assessed by quantitative real-time PCR and western blotting, respectively. Sulforhodamine B assay and Transwell assay were employed to detect cell proliferation, migration and invasion, respectively. Moreover, RNA immunoprecipitation was performed to determine whether RNA-induced silencing complex contained MALAT-1 and its potential binding miRNA. Luciferase assays was used to confirm potential binding site. RESULTS: Bioinformatics search predicted that miR-200c-3p was a direct target of MALAT-1. Further, we found a reciprocal suppression between MALAT-1 and miR-200c-3p expression. In terms of mechanisms, high MALAT-1 and low miR-200c-3p may form a novel feedback loop. On the one hand, MALAT-1 functioned as a competing endogenous RNA to suppress miR-200c-3p expression, leading to upregulation of ZEB1 expression. On the other hand, miR-200c-3p inhibited the level of MALAT-1 expression was in a way similar to miRNA-mediated downregulation of target genes. Clinical data further indicated that MALAT-1 and ZEB1 expression was negatively correlated with miR-200c-3p transcript level of PDAC tissues. There was a positive correlation between MALAT-1 and ZEB1 level. MALAT-1 (high)/miR-200c-3p (low) correlated with shorter overall survival of PDAC patients. Multivariate analysis revealed that both MALAT-1 and miR-200c-3p levels were independent prognostic factors. CONCLUSION: Our findings firstly revealed a novel feedback loop between high MALAT-1 and low miR-200c-3p. Targeting the feedback loop between high MALAT-1 and low miR-200c-3p will be a therapeutic strategy for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , MicroARNs/biosíntesis , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/biosíntesis , Biomarcadores de Tumor , Carcinoma Ductal Pancreático/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/genética , Pronóstico , ARN Largo no Codificante/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/biosíntesis
9.
Tumour Biol ; 39(3): 1010428317694544, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28347252

RESUMEN

Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1-6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Movimiento Celular/genética , Resistencia a Antineoplásicos/genética , Humanos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Invasividad Neoplásica/genética , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Transducción de Señal , Microambiente Tumoral/genética
10.
Tumour Biol ; 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27747589

RESUMEN

SAV1 is a human homolog of salvador that contains two protein-protein interaction modules known as WW domains and acts as a scaffolding protein for Hpo and Warts. SAV1 is known to be a tumor suppressor, but its clinical and prognostic implications remain elusive. This study aimed at evaluating the prognostic significance and associated expression of SAV1 in pancreatic ductal adenocarcinoma (PDAC) patients. The expression of SAV1 in tissue specimens of PDAC patients were assayed with immunohistochemistry on a tissue microarray. The correlations between SAV1 expression and clinicopathological characteristics were analyzed by Pearson's chi-square test, Fisher's exact test, and Spearman's rank. The prognostic factors for overall survival were analyzed by univariate and multivariate Cox regression. The percentage of SAV1 expression in PDAC (50.6 %) was significantly lower than those in paratumor tissues (69.9 %) (P = 0.017). Expression of SAV1 was only significantly correlated with histological differentiation (P = 0.025) and N classification (P = 0.009). On multivariate analysis, elevated expression of SAV1 and N0 was a significant favorable prognostic factor of OS. Our study demonstrated for the first time that lower expression of SAV1 might be involved in the progression of PDAC, suggesting that SAV1 may be a potential prognostic marker and target for PDAC therapy.

11.
Gastroenterology ; 147(2): 485-97.e18, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859161

RESUMEN

BACKGROUND & AIMS: Dysregulation of ß-catenin and the transcriptional activator FOXM1 mediate oncogenesis, but it is not clear how these proteins become dysregulated in tumors that do not typically carry mutations in adenomatous polyposis coli (APC) or ß-catenin, such as pancreatic ductal adenocarcinomas (PDACs). We searched for microRNAs that regulate levels of FOXM1 in PDAC cells and samples from patients. METHODS: We identified microRNAs that affect levels of FOXM1 in PDACs using bioinformatic, genetic, and pharmacologic approaches. We altered expression of the microRNA-494 (miR-494) in PDAC cell lines (AsPC-1 and PANC-1) and examined the effects on FOXM1 and ß-catenin signaling and cell proliferation and colony formation. The cells were injected into immunocompromised mice and growth of xenograft tumors and liver metastases were measured. We performed immunohistochemical analyses of 10 paired PDAC and nontumor pancreatic tissue samples collected from untreated patients during surgery. RESULTS: We identified miR-494 as a negative regulator of FOXM1 levels in PDAC cells, and found that levels of this microRNA were reduced in PDAC specimens, compared with nontumor tissues. Loss of response of PDAC cells to transforming growth factor ß, owing to SMAD4 deficiency, reduced expression of miR-494. Transgenic expression of miR-494 in PDAC cells produced the same effects as reducing expression of FOXM1 or blocking nuclear translocation of ß-catenin, reducing cell proliferation, migration, and invasion, and increasing their sensitivity to gemcitabine. Reduced expression of miR-494 correlated with PDAC metastasis and reduced survival times of patients. CONCLUSIONS: Loss of SMAD4 in PDAC cells leads to reduced levels of miR-494, increased levels of FOXM1, and nuclear localization of ß-catenin. miR-494 might be developed as a prognostic marker for patients with PDAC or a therapeutic target.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Antibióticos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Proteína Smad4/genética , Factores de Tiempo , Transfección , Regulación hacia Arriba , beta Catenina/genética , Gemcitabina
12.
Artículo en Inglés | MEDLINE | ID: mdl-38284711

RESUMEN

Bile acids are well known to promote the digestion and absorption of fat, and at the same time, they play an important role in lipid and glucose metabolism. More studies have found that bile acids such as ursodeoxycholic acid also have anti-inflammatory and immune-regulating effects. Bile acids have been extensively studied in biliary and intestinal tumors but less in pancreatic cancer. Patients with pancreatic cancer, especially pancreatic head cancer, are often accompanied by biliary obstruction and elevated bile acids caused by tumors. Elevated total bile acid levels in pancreatic cancer patients usually have a poor prognosis. There has been controversy over whether elevated bile acids are harmful or beneficial to pancreatic cancer. Still, there is no doubt that bile acids are important for the occurrence and development of pancreatic cancer. This article summarizes the research on bile acid as a biomarker and regulation of the occurrence, development and chemoresistance of pancreatic cancer, hoping to provide some inspiration for future research.

13.
EMBO Mol Med ; 16(5): 1115-1142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570712

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical function of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Proliferación Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Apoptosis/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas de la Membrana , Proteínas Tirosina Quinasas
14.
Mol Cancer ; 12: 159, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24325450

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica , Factores de Transcripción Forkhead/fisiología , Células Madre Neoplásicas/metabolismo , Animales , Proliferación Celular , Progresión de la Enfermedad , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/patología , Transducción de Señal
15.
IET Syst Biol ; 17(4): 174-186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37341253

RESUMEN

Cuproptosis is a novel cell death pathway, and the regulatory mechanism in pancreatic cancer (PC) is unclear. The authors aimed to figure out whether cuproptosis-related lncRNAs (CRLs) could predict prognosis in PC and the underlying mechanism. First, the prognostic model based on seven CRLs screened by the least absolute shrinkage and selection operator Cox analysis was constructed. Following this, the risk score was calculated for pancreatic cancer patients and divided patients into high and low-risk groups. In our prognostic model, PC patients with higher risk scores had poorer outcomes. Based on several prognostic features, a predictive nomogram was established. Furthermore, the functional enrichment analysis of differentially expressed genes between risk groups was performed, indicating that endocrine and metabolic pathways were potential regulatory pathways between risk groups. TP53, KRAS, CDKN2A, and SMAD4 were dominant mutated genes in the high-risk group and tumour mutational burden was positively correlated with the risk score. Finally, the tumour immune landscape indicated patients in the high-risk group were more immunosuppressive than that in the low-risk group, with lower infiltration of CD8+ T cells and higher M2 macrophages. Above all, CRLs can be applied to predict PC prognosis, which is closely correlated with the tumour metabolism and immune microenvironment.


Asunto(s)
Apoptosis , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , Linfocitos T CD8-positivos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Factores de Riesgo , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Cobre , Neoplasias Pancreáticas
16.
Cancer Lett ; 564: 216206, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37120007

RESUMEN

Pyroptosis is closely associated with cancer development; however, the role of pyroptosis in pancreatic ductal adenocarcinoma (PDAC), a fatal malignant tumour with a poor overall survival rate, remains elusive. Here, we explored the mechanism of chemotherapy-induced pyroptosis and elucidated the role of pyroptosis in mediating PDAC progression and chemoresistance. The results demonstrated first- and second-line chemotherapeutic drugs against PDAC, including gemcitabine, irinotecan, 5-fluorouracil, paclitaxel, and cisplatin, induced concurrent pyroptosis and apoptosis. During this process, gasdermin E (GSDME) was cleaved by activated caspase-3, which was accompanied by pro-apoptotic caspase-7/8 activation. GSDME knockdown switched pyroptosis to apoptosis, decreased invasion and migration, and enhanced the sensitivity of PDAC cells to chemotherapy in vitro and in vivo. GSDME was highly expressed in PDAC tissues and positively correlated with histological differentiation and vascular invasion. Furthermore, cells that survived pyroptosis promoted proliferation and invasion and impaired the chemosensitivity of PDAC cells, which was attenuated by the GSDME knockdown. Our findings demonstrated that chemotherapeutics against PDAC induce GSDME-dependent pyroptosis, and GSDME expression positively correlated with PDAC progression and chemoresistance. Targeting GSDME may be a novel approach to overcoming chemoresistance in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Piroptosis , Gasderminas , Resistencia a Antineoplásicos , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Caspasa 3/metabolismo , Neoplasias Pancreáticas
17.
Cancer Lett ; 558: 216095, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796670

RESUMEN

Our previous research defined a novel metabolic cancer associated fibroblasts subset (meCAFs) enriched in loose-type pancreatic ductal adenocarcinoma (PDAC) and related to CD8+ T cells accumulation. Consistently, the abundance of meCAFs was associated with poor prognosis but better immunotherapy responses in PDAC patients. However, the metabolic characteristic of meCAFs and its cross-talk with CD8+ T cells remain to be elucidated. In this study, we identified PLA2G2A as a marker of meCAFs. In particular, the abundance of PLA2G2A+ meCAFs was positively related to the accumulation of total CD8+ T cells and negatively correlated with clinical outcomes of PDAC patients and infiltration of intratumoral CD8+ T cells. We demonstrated that PLA2G2A+ meCAFs substantially attenuated the antitumor ability of tumor infiltrating CD8+ T cells and facilitated tumor immune escape in PDAC. Mechanistically, PLA2G2A regulated the function of CD8+ T cells as a pivotal soluble mediator via MAPK/Erk and NF-κB signaling pathways. In conclusion, our study identified the unrecognized role of PLA2G2A+ meCAFs in promoting tumor immune escape by impeding the antitumor immune function of CD8+ T cells, and strongly suggested PLA2G2A as a promising biomarker and therapeutic target for immunotherapy in PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T Citotóxicos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Inmunidad , Microambiente Tumoral , Fosfolipasas A2 Grupo II , Neoplasias Pancreáticas
18.
Front Oncol ; 12: 890715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756644

RESUMEN

Background: Pancreatic head cancer and pancreatic body/tail cancer are considered to have different clinical presentations and to have altered outcomes. Methods: Ninety cases of pancreatic adenocarcinoma (PDAC) from our institution were used as a discovery set and 166 cases of PDAC from the TCGA cohort were used as a validation set. According to the anatomical location, the cases of PDAC were divided into the pancreatic head cancer group and the pancreatic body/tail cancer group. Firstly, the different biological functions of the two groups were assessed by ssGSEA. Meanwhile, ESTIMATE and CIBERSORT were conducted to estimate immune infiltration. Then, a novel anatomical site-related risk score (SRS) model was constructed by LASSO and Cox regression. Survival and time-dependent ROC analysis was used to prove the predictive ability of our model in two cohorts. Subsequently, an integrated survival decision tree and a scoring nomogram were constructed to improve prognostic stratification and predictive accuracy for individual patients. In addition, gseaGO and gseaKEGG pathway analyses were performed on genes in the key module by the R package. Results: Overall survival and the objective response rate (ORR) of patients with pancreatic body/tail cancer were markedly superior to those with pancreatic head cancer. In addition, distinct immune characteristics and gene patterns were observed between the two groups. Then, we screened 5 biomarkers related to the prognosis of pancreatic cancer and constructed a more powerful novel SRS model to predict prognosis. Conclusions: Our research shed some light on the revelation of gene patterns, immune and mutational landscape characterizations, and their relationships in different PDAC locations.

19.
Front Cell Dev Biol ; 10: 1001606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274838

RESUMEN

Angiogenesis, a hallmark of cancer, is related to prognosis, tumor progression, and treatment response. Nevertheless, the correlation of angiogenesis-based molecular signature with clinical outcome and immune cell infiltration has not been thoroughly studied in pancreatic cancer. In this study, multiple bioinformatics methods were combined to evaluate prognosis, immune cell infiltration, and the alterations of angiogenesis-related genes (ARGs) in PC samples, and further establish a novel angiogenesis-related gene signature. Moreover, the protein and mRNA expression levels of four angiogenesis risk genes were determined by Human Protein Atlas (HPA) database and qPCR analysis, respectively. Here, we recognized two distinct angiogenesis subtypes and two gene subtypes, and revealed the critical roles of ARGs in the tumor immune microenvironment (TIME), clinical features, and prognosis. Consequently, we established an ARGs score to predict prognosis and therapeutic response of PC patients, and validated its robust predictive ability. Additionally, the ARGs score was markedly associated with clinical outcomes, tumor mutation burden (TMB), and chemotherapeutic drug sensitivity. In brief, our findings imply that the ARGs score is a robust prognostic indicator and may contribute to the development of effective individualized therapies for PC.

20.
Front Cell Dev Biol ; 10: 942225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003146

RESUMEN

Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies. Aging is described as the degeneration of physiological function, which is complexly correlated with cancer. It is significant to explore the influences of aging-related genes (ARGs) on PAAD. Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets, we used univariate Cox regression analysis and acquired eight differentially expressed ARGs with prognostic values. Two molecular subtypes were identified based on these ARGs to depict PAAD patients' overall survival (OS) and immune microenvironments preliminarily. Cluster 1 had a poor OS as well as a worse immune microenvironment. Through least absolute shrinkage and selection operator (LASSO) regression analysis, we constructed a seven-ARG risk signature based on the TCGA dataset and verified it in Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) to predict the prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients. The high-risk group possessed an unfavorable OS compared with that of the low-risk group. We also verified the independence and clinical availability of the risk signature by Cox regression analyses and the establishment of a nomogram, respectively. The higher risk score was associated with several clinical factors such as higher grade and advanced tumor stage as well as lower immunoscore and cluster 1. The negative associations of risk scores with immune, stroma, and estimate scores proved the terrible immune microenvironment in the high-risk group. Relationships between risk score and immune checkpoint gene expression as well as signal pathways provided several therapeutic targets. PAAD patients in the low-risk group possessed lower tumor mutations as well as a higher susceptibility to axitinib and vorinostat. The high-risk group bore a higher TMB and cisplatin and dasatinib may be better options. We used immunohistochemistry and qPCR to confirm the expression of key ARGs with their influences on OS. In conclusion, we identified two ARG-mediated molecular subtypes and a novel seven-ARG risk signature to predict prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA