Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2220075121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38335256

RESUMEN

Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer's A[Formula: see text] amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A[Formula: see text] fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Péptidos beta-Amiloides/química , Amiloide/química , Simulación por Computador , Fragmentos de Péptidos/química , Cinética
2.
Proc Natl Acad Sci U S A ; 117(39): 24251-24257, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929030

RESUMEN

Understanding the mechanism of action of compounds capable of inhibiting amyloid-fibril formation is critical to the development of potential therapeutics against protein-misfolding diseases. A fundamental challenge for progress is the range of possible target species and the disparate timescales involved, since the aggregating proteins are simultaneously the reactants, products, intermediates, and catalysts of the reaction. It is a complex problem, therefore, to choose the states of the aggregating proteins that should be bound by the compounds to achieve the most potent inhibition. We present here a comprehensive kinetic theory of amyloid-aggregation inhibition that reveals the fundamental thermodynamic and kinetic signatures characterizing effective inhibitors by identifying quantitative relationships between the aggregation and binding rate constants. These results provide general physical laws to guide the design and optimization of inhibitors of amyloid-fibril formation, revealing in particular the important role of on-rates in the binding of the inhibitors.


Asunto(s)
Amiloide/química , Modelos Químicos , Agregación Patológica de Proteínas/tratamiento farmacológico , Diseño de Fármacos , Cinética , Terapia Molecular Dirigida , Termodinámica
3.
Front Neurosci ; 16: 943355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203800

RESUMEN

Amyloid formation is linked to devastating neurodegenerative diseases, motivating detailed studies of the mechanisms of amyloid formation. For Aß, the peptide associated with Alzheimer's disease, the mechanism and rate of aggregation have been established for a range of variants and conditions in vitro and in bodily fluids. A key outstanding question is how the relative stabilities of monomers, fibrils and intermediates affect each step in the fibril formation process. By monitoring the kinetics of aggregation of Aß42, in the presence of urea or guanidinium hydrochloride (GuHCl), we here determine the rates of the underlying microscopic steps and establish the importance of changes in relative stability induced by the presence of denaturant for each individual step. Denaturants shift the equilibrium towards the unfolded state of each species. We find that a non-ionic denaturant, urea, reduces the overall aggregation rate, and that the effect on nucleation is stronger than the effect on elongation. Urea reduces the rate of secondary nucleation by decreasing the coverage of fibril surfaces and the rate of nucleus formation. It also reduces the rate of primary nucleation, increasing its reaction order. The ionic denaturant, GuHCl, accelerates the aggregation at low denaturant concentrations and decelerates the aggregation at high denaturant concentrations. Below approximately 0.25 M GuHCl, the screening of repulsive electrostatic interactions between peptides by the charged denaturant dominates, leading to an increased aggregation rate. At higher GuHCl concentrations, the electrostatic repulsion is completely screened, and the denaturing effect dominates. The results illustrate how the differential effects of denaturants on stability of monomer, oligomer and fibril translate to differential effects on microscopic steps, with the rate of nucleation being most strongly reduced.

4.
Nat Chem ; 12(5): 445-451, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284577

RESUMEN

Oligomeric species populated during the aggregation of the Aß42 peptide have been identified as potent cytotoxins linked to Alzheimer's disease, but the fundamental molecular pathways that control their dynamics have yet to be elucidated. By developing a general approach that combines theory, experiment and simulation, we reveal, in molecular detail, the mechanisms of Aß42 oligomer dynamics during amyloid fibril formation. Even though all mature amyloid fibrils must originate as oligomers, we found that most Aß42 oligomers dissociate into their monomeric precursors without forming new fibrils. Only a minority of oligomers converts into fibrillar structures. Moreover, the heterogeneous ensemble of oligomeric species interconverts on timescales comparable to those of aggregation. Our results identify fundamentally new steps that could be targeted by therapeutic interventions designed to combat protein misfolding diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Simulación por Computador , Humanos , Cinética , Modelos Moleculares , Fragmentos de Péptidos/química , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína
5.
Nat Chem ; 12(5): 497, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32303714

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Phys Rev E ; 93(2): 022704, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986385

RESUMEN

We show that the flexoelectric model of chiral and achiral modulated nematics predicts the compression modulus that is by orders of magnitude lower than the measured values. The discrepancy is much larger in the chiral modulated nematic phase, in which the measured value of the compression modulus is of the same order of magnitude as in achiral modulated nematics, even though the heliconical pitch is by an order of magnitude larger. The relaxation of a one-constant approximation in the biaxial elastic model used for chiral modulated nematics does not solve the problem. Therefore, we propose a structural model of the modulated nematic phase, which is consistent with the current experimental evidence and can also explain large compression modulus: the structure consists of short-range smectic clusters with a fourfold symmetry and periodicity of two molecular distances. In chiral systems, chiral interactions lead to a helicoidal structure of such clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA