Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354993

RESUMEN

Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.


Asunto(s)
Alginatos , Gelatina , Animales , Gelatina/farmacología , Alginatos/farmacología , Tinta , Andamios del Tejido , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Regeneración Ósea
2.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477539

RESUMEN

Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.


Asunto(s)
Aleaciones/farmacología , Inflamación/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología , Ligando RANK/genética , Animales , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Cumarinas/química , Cumarinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunomodulación/efectos de los fármacos , Inflamación/genética , Inflamación/patología , Macrófagos/efectos de los fármacos , Magnesio/química , Magnesio/farmacología , Nanopartículas del Metal/química , Ratones , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier , Óxido de Zinc/farmacología
3.
Biomater Adv ; 161: 213894, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796956

RESUMEN

Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface. The presence of biosilica generated composite structures with lower swelling degrees and higher stiffness when compared to gelatin fibers. Increasing DE content led to higher Young modulus, while the stability of the protein matrix in PBS, at 37 °C, over 21 was significantly decreased by the presence of diatomite loadings. The best preosteoblast response was obtained for FG_DE3, with enhanced mineralization during the osteogenic differentiation when compared to the control sample without diatomite. 5 % DE in FG_DE5 proved to negatively influence cells' metabolic activity and morphology. Hence, the obtained composite microfibrillar scaffolds might find application as osteoblast-responsive materials for bone tissue engineering.


Asunto(s)
Gelatina , Osteoblastos , Ingeniería de Tejidos , Andamios del Tejido , Gelatina/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Animales , Tierra de Diatomeas/química , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratones , Regeneración Ósea/efectos de los fármacos , Línea Celular , Microambiente Celular/efectos de los fármacos , Microfibrillas/química , Microfibrillas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos
4.
Mater Sci Eng C Mater Biol Appl ; 122: 111866, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641888

RESUMEN

Shape fidelity and integrity are serious challenges in the 3D printing of hydrogel precursors, as they can influence the overall performance of 3D scaffolds. This work reports the development of superconcentrated inks based on sodium alginate and fish gelatin as an appealing strategy to satisfy such challenges and dictate the quality of the printed scaffolds, without using crosslinking strategies during 3D printing. SEM micrographs and micro-CT images indicate the homogeneous distribution of the polysaccharide in the gelatin-based matrix, suggesting its potential to act as a reinforcing additive. The high concentration of gelatin aqueous solution (50 wt%) and substantial incorporation of alginate have facilitated the highly accurate printability and influence the in vitro stability and mechanical properties of the printed scaffolds. An improvement of the stiffness is dictated by the increase of alginate concentration from 20 wt% to 25 wt%, and an increase of Young modulus with about 46% is reached, confirming the reinforcing effect of polysaccharide. This study highlights the potential of paste-type inks to provide high resolution 3D printed structures with appealing structural and dimensional stability, in vitro degradability and mechanical properties for biomedical applications.


Asunto(s)
Alginatos , Gelatina , Animales , Tinta , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
5.
Polymers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092270

RESUMEN

The bioactivity of scaffolds represents a key property to facilitate the bone repair after orthopedic trauma. This study reports the development of biomimetic paste-type inks based on wollastonite (CS) and fish gelatin (FG) in a mass ratio similar to natural bone, as an appealing strategy to promote the mineralization during scaffold incubation in simulated body fluid (SBF). High-resolution 3D scaffolds were fabricated through 3D printing, and the homogeneous distribution of CS in the protein matrix was revealed by scanning electron microscopy/energy-dispersive X-ray diffraction analysis (SEM/EDX) micrographs. The bioactivity of the scaffold was suggested by an outstanding mineralization capacity revealed by the apatite layers deposited on the scaffold surface after immersion in SBF. The biocompatibility was demonstrated by cell proliferation established by MTT assay and fluorescence microscopy images and confirmed by SEM micrographs illustrating cell spreading. This work highlights the potential of the bicomponent inks to fabricate 3D bioactive scaffolds and predicts the osteogenic properties for bone regeneration applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA