Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Helicobacter ; 28(4): e12997, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314018

RESUMEN

BACKGROUND: Helicobacter pylori infection remains a major public health threat leading to gastrointestinal illness and increased risk of gastric cancer. Mostly affecting populations in developing countries no vaccines are yet available and the disease is controlled by antimicrobials which, in turn, are driving the emergence of AMR. MATERIALS AND METHODS: We have engineered spores of Bacillus subtilis to display putative H. pylori protective antigens, urease subunit A (UreA) and subunit B (UreB) on the spore surface. Following oral dosing of mice with these spores, we evaluated immunity and colonization in animals challenged with H. pylori. RESULTS: Oral immunization with spores expressing either UreA or UreB showed antigen-specific mucosal responses (fecal sIgA) including seroconversion and hyperimmunity. Following challenge, colonization by H. pylori was significantly reduced by up to 1-log. CONCLUSIONS: This study demonstrates the utility of bacterial spores for mucosal vaccination to H. pylori infection. The heat stability and robustness of Bacillus spores coupled with their existing use as probiotics make them an attractive solution for either protection against H. pylori infection or potentially for therapy and control of active infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Infecciones por Helicobacter/prevención & control , Vacunas Bacterianas , Ureasa/genética , Inmunización , Vacunación , Antígenos Bacterianos/genética , Esporas , Ratones Endogámicos BALB C , Anticuerpos Antibacterianos
2.
PLoS Pathog ; 14(9): e1007191, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30208103

RESUMEN

Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.


Asunto(s)
Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Cresoles/metabolismo , Microbioma Gastrointestinal/fisiología , Bacterias Gramnegativas/fisiología , Animales , Antibacterianos/efectos adversos , Biodiversidad , Membrana Celular/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Cresoles/farmacología , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Metaboloma , Ratones , Ratones Endogámicos C57BL , Mutación
3.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150519

RESUMEN

Genetic manipulation of bacterial spores of the genus Bacillus has shown potential for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the spore surface retain activity and generally are not degraded. The heat stability of spores, coupled with their desiccation resistance, makes them suitable for delivery to humans or to animals by the oral route. Despite these attributes, one regulatory obstacle has remained regarding the fate of recombinant spores shed into the environment as viable spores. We have addressed the biological containment of GMO spores by utilizing the concept of a thymineless death, a phenomenon first reported 6 decades ago. Using Bacillus subtilis, we have inserted chimeric genes in the two thymidylate synthase genes, thyA and thyB, using a two-step process. Insertion is made first at thyA and then at thyB whereby resistance to trimethoprim enables selection of recombinants. Importantly, this method requires introduction of no new antibiotic resistance genes. Recombinant spores have a strict dependence on thymine (or thymidine), and in its absence cells lyse and die. Insertions are stable with no evidence for suppression or reversion. Using this system, we have successfully created a number of spore vaccines as well as spores displaying active enzymes.IMPORTANCE Genetic manipulation of bacterial spores offers a number of exciting possibilities for public and animal health, including their use as heat-stable vehicles for delivering vaccines or enzymes. Despite this, one remaining problem is the fate of recombinant spores released into the environment where they could survive in a dormant form indefinitely. We describe a solution whereby, following genetic manipulation, the bacterium is rendered dependent on thymine. As a consequence, spores if released would produce bacteria unable to survive, and they would exhibit a thymineless death due to rapid cessation of metabolism. The method we describe has been validated using a number of exemplars and solves a critical problem for containing spores of GMOs in the environment.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Esporas Bacterianas/metabolismo , Timidina/metabolismo , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Microorganismos Modificados Genéticamente/efectos de los fármacos , Microorganismos Modificados Genéticamente/genética , Esporas Bacterianas/genética
4.
Vet Res ; 49(1): 64, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060757

RESUMEN

Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential.


Asunto(s)
Ganado/inmunología , Vacunas/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Estados Unidos
5.
Vet Res ; 49(1): 70, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060759

RESUMEN

Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public-private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.


Asunto(s)
Ganado/inmunología , Vacunas/uso terapéutico , Crianza de Animales Domésticos , Animales , Antibacterianos/uso terapéutico , Estados Unidos , Vacunación/métodos
6.
J Infect Dis ; 216(11): 1452-1459, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-28968845

RESUMEN

Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation. In animal models of CDI, we show that when CotE is absent, both colonization and virulence were markedly reduced. We demonstrate here that the attachment of spores to the intestine is essential in the development of CDI. Spores are usually regarded as biochemically dormant, but our findings demonstrate that rather than being simply agents of transmission and dissemination, spores directly contribute to the establishment and promotion of disease.


Asunto(s)
Adhesinas Bacterianas/fisiología , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Esporas Bacterianas/química , Animales , Proteínas Bacterianas/genética , Quitinasas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Recuento de Colonia Microbiana , Cricetinae , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos/fisiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Mesocricetus , Ratones , Mucinas/metabolismo , Mutación , Peroxirredoxinas/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/patogenicidad , Virulencia
7.
Infect Immun ; 85(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28167669

RESUMEN

Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26-39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection and remained fully colonized. Along with neutralizing toxins, antibodies to TcdA26-39 (but not to toxoids), whether raised to the recombinant protein or to TcdA26-39 expressed on the B. subtilis spore surface, cross-react with a number of seemingly unrelated proteins expressed on the vegetative cell surface or spore coat of C. difficile These include two dehydrogenases, AdhE1 and LdhA, as well as the CdeC protein that is present on the spore. Anti-TcdA26-39 mucosal antibodies obtained following immunization with recombinant B. subtilis spores were able to reduce the adhesion of C. difficile to mucus-producing intestinal cells. This cross-reaction is intriguing yet important since it illustrates the importance of mucosal immunity for complete protection against CDI.


Asunto(s)
Toxinas Bacterianas/inmunología , Clostridioides difficile/inmunología , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/microbiología , Enterotoxinas/inmunología , Inmunoglobulina A Secretora/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Dominios y Motivos de Interacción de Proteínas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Toxinas Bacterianas/química , Línea Celular , Infecciones por Clostridium/prevención & control , Cricetinae , Reacciones Cruzadas , Enterotoxinas/química , Humanos , Inmunidad Mucosa , Inmunización , Ratones , Fragmentos de Péptidos/inmunología , Esporas Bacterianas/inmunología
8.
Mol Microbiol ; 92(5): 1025-38, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24720767

RESUMEN

The BclA protein is a major component of the outermost layer of spores of a number of bacterial species and Clostridium difficile carries three bclA genes. Using insertional mutagenesis each gene was characterized and spores devoid of these proteins had surface aberrations, reduced hydrophobicity and germinated faster than wild-type spores. Therefore the BclA proteins were likely major components of the spore surface and when absent impaired the protective shield effect of this outermost layer. Analysis of infection and colonization in mice and hamsters revealed that the 50% infectious dose (ID50 ) of spores was significantly higher (2-logs) in the bclA1(-) mutant compared to the isogenic wild-type control, but that levels of toxins (A and B) were indistinguishable from animals dosed with wild-type spores. bclA1(-) spores germinated faster than wild-type spores yet mice were less susceptible to infection suggesting that BclA1 must play a key role in the initial (i.e. pre-spore germination) stages of infection. We also show that the ID50 was higher in mice infected with R20291, a 'hypervirulent' 027 strain, that carries a truncated BclA1 protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/metabolismo , Esporas Bacterianas/patogenicidad , Animales , Clostridioides difficile/metabolismo , Cricetinae , Regulación Bacteriana de la Expresión Génica , Ratones , Esporas Bacterianas/metabolismo
9.
Eur J Immunol ; 44(2): 440-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24214530

RESUMEN

Mucosal boosting of BCG-immunised individuals with a subunit tuberculosis (TB) vaccine would be highly desirable, considering that the lungs are the principal port of entry for Mycobacterium tuberculosis (MTB) and the site of the primary infection and reactivation. However, the main roadblock for subunit TB vaccine development is the lack of suitable adjuvants that could induce robust local and systemic immune responses. Here, we describe a novel vaccine delivery system that was designed to mimic, in part, the MTB pathogen itself. The surface of yellow carnauba wax nanoparticles was coated with the highly immunogenic Ag85B Ag of MTB and they were directed to the alveolar epithelial surfaces by the incorporation of the heparin-binding hemagglutinin adhesion (HBHA) protein. Our results showed that the i.n. immunisation of BCG-primed BALB/c mice with nanoparticles adsorbed with Ag85B-HBHA (Nano-AH vaccine) induced robust humoral and cellular immune responses and IFN-γ production, and multifunctional CD4⁺ T cells expressing IFN-γ, IL-2 and TNF-α. Mice challenged with H37Rv MTB had a significantly reduced bacterial load in their lungs when compared with controls immunised with BCG alone. We therefore conclude that this immunisation approach is an effective means of boosting the BCG-induced anti-TB immunity.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Nanopartículas/administración & dosificación , Alveolos Pulmonares/inmunología , Mucosa Respiratoria/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Aciltransferasas/genética , Aciltransferasas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/genética , Animales , Antígenos Bacterianos/genética , Vacuna BCG/inmunología , Carga Bacteriana/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Proliferación Celular , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Interferón gamma/inmunología , Interleucina-2/inmunología , Lectinas/genética , Lectinas/inmunología , Ratones , Ratones Endogámicos BALB C , Alveolos Pulmonares/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Mucosa Respiratoria/microbiología , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/genética , Factor de Necrosis Tumoral alfa/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
10.
Microbiology (Reading) ; 161(Pt 1): 194-202, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326460

RESUMEN

Bacillus indicus and Bacillus firmus synthesize C30 carotenoids via farnesyl pyrophosphate, forming apophytoene as the first committed step in the pathway. The products of the pathways were methyl 4'-[6-O-acyl-glycosyl)oxy]-4,4'-diapolycopen-4-oic acid and 4,4'-diapolycopen-4,4'-dioic acid with putative glycosyl esters. The genomes of both bacteria were sequenced, and the genes for their early terpenoid and specific carotenoid pathways annotated. All genes for a functional 1-deoxy-d-xylulose 5-phosphate synthase pathway were identified in both species, whereas genes of the mevalonate pathway were absent. The genes for specific carotenoid synthesis and conversion were found on gene clusters which were organized differently in the two species. The genes involved in the formation of the carotenoid cores were assigned by functional complementation in Escherichia coli. This bacterium was co-transformed with a plasmid mediating the formation of the putative substrate and a second plasmid with the gene of interest. Carotenoid products in the transformants were determined by HPLC. Using this approach, we identified the genes for a 4,4'-diapophytoene synthase (crtM), 4,4'-diapophytoene desaturase (crtNa), 4,4'-diapolycopene ketolase (crtNb) and 4,4'-diapolycopene aldehyde oxidase (crtNc). The three crtN genes were closely related and belonged to the crtI gene family with a similar reaction mechanism of their enzyme products. Additional genes encoding glycosyltransferases and acyltransferases for the modification of the carotenoid skeleton of the diapolycopenoic acids were identified by comparison with the corresponding genes from other bacteria.


Asunto(s)
Bacillus/genética , Bacillus/metabolismo , Vías Biosintéticas , Carotenoides/biosíntesis , Genes Bacterianos , Genoma Bacteriano , Bacillus/clasificación , Carbono/química , Carotenoides/química , Carotenoides/aislamiento & purificación , Biología Computacional , Orden Génico , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia
11.
BMC Microbiol ; 15: 280, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26679502

RESUMEN

BACKGROUND: The symptoms of Clostridium difficile infection are mediated primarily by two toxins, TcdA and TcdB, the expression of which is governed by a multitude of factors including nutrient availability, growth phase and cell stress. Several global regulators have been implicated in the regulation of toxin expression, such as CcpA and CodY. RESULTS: During attempts to insertionally inactivate a putative secondary cell wall polysaccharide synthesis gene, we obtained several mutants containing off-target insertions. One mutant displayed an unusual branched colony morphology and was investigated further. Marker recovery revealed an insertion in mfd, a gene encoding a transcription-coupled repair factor. The mfd mutant exhibited pleiotropic effects, in particular increased expression of both toxin A and B (TcdA and TcdB) compared to the parental strain. Western blotting and cellular cytotoxicity assays revealed increased expression across all time points over a 24 h period, with inactivation of mfd resulting in at least a 10 fold increase in cell cytotoxicity. qRT-PCR demonstrated the upregulation of both toxins occurred on a transcriptional level. All effects of the mfd mutation were complemented by a plasmid-encoded copy of mfd, showing the effects are not due to polar effects of the intron insertion or to second site mutations. CONCLUSIONS: This study adds Mfd to the repertoire of factors involved in regulation of toxin expression in Clostridium difficile. Mfd is known to remove RNA polymerase molecules from transcriptional sites where it has stalled due to repressor action, preventing transcriptional read through. The consistently high levels of toxin in the C. difficile mfd mutant indicate this process is inefficient leading to transcriptional de-repression.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Enterotoxinas/genética , Mutagénesis Insercional/genética , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Supervivencia Celular/efectos de los fármacos , Pared Celular/genética , Chlorocebus aethiops , Clostridioides difficile/metabolismo , Clostridioides difficile/fisiología , Enterotoxinas/metabolismo , Enterotoxinas/toxicidad , Regulación Bacteriana de la Expresión Génica , Células HT29 , Humanos , Mutagénesis Insercional/inmunología , Transcripción Genética , Regulación hacia Arriba , Células Vero
12.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963177

RESUMEN

Introduction. Administered nasally, spores of the Gram-positive bacterium Bacillus subtilis have been shown to be able to induce innate immunity sufficient to confer protection to influenza and respiratory syncytial virus.Hypothesis. Although members of the aerobiome, intranasal delivery of high numbers of live spores carries potential safety issues.Aim. To address the potential safety risk of using live spores, we assessed the safety of spores that had been completely inactivated using heat sterilization.Methodology. Using autoclaved, and therefore killed, spores of a generally recognized as safe-notified B. subtilis strain (DSM 32444), safety was assessed in vitro (biotype, genome and cell based cytoxicity) and in vivo, using intranasal administration in rodent models and lastly in human volunteers.Results. Using a 15-day, repeat-dose, regimen in a rodent model, no indication of toxicity was observed. In a registered human study (NCT05984004), a formulated preparation of inactivated DSM 32444 spores referred to as SPEROVID was developed, and tolerance in human volunteers was assessed following 7 days of nasal dosing (2-4 times/day).Conclusion. Our study demonstrated that in humans an intranasal dose of up to 3×108 killed spores was safe and well tolerated.


Asunto(s)
Administración Intranasal , Bacillus subtilis , Esporas Bacterianas , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Ratas , Adulto Joven
13.
J Med Microbiol ; 73(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235783

RESUMEN

Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Vacunas , Humanos , Masculino , Femenino , Ratones , Animales , Infecciones por Helicobacter/microbiología , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Genotipo , Genómica , Asia Sudoriental/epidemiología
14.
J Bacteriol ; 195(7): 1492-503, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23335421

RESUMEN

Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Clostridioides difficile/genética , Enzimas/genética , Enzimas/metabolismo , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Esporas Bacterianas/genética
15.
J Proteome Res ; 12(10): 4507-21, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23998435

RESUMEN

Bacillus cereus, responsible for food poisoning, and Clostridium difficile, the causative agent of Clostridium difficile-associated diarrhea (CDAD), are both spore-forming pathogens involved in food spoilage, food intoxication, and other infections in humans and animals. The proteinaceous coat and the exosporium layers from spores are important for their resistance and pathogenicity characteristics. The exosporium additionally provides an ability to adhere to surfaces eventually leading to spore survival in food. Thus, studying these layers and identifying suitable protein targets for rapid detection and removal of spores is of the utmost importance. In this study, we identified 100 proteins from B. cereus spore coat, exosporium and 54 proteins from the C. difficile coat insoluble protein fraction. In an attempt to define a universal set of spore outer layer proteins, we identified 11 superfamily domains common to the identified proteins from two Bacilli and one Clostridium species. The evaluated orthologue relationships of identified proteins across different spore formers resulted in a set of 13 coat proteins conserved across the spore formers and 12 exosporium proteins conserved in the B. cereus group, which could be tested for quick and easy detection or targeted in strategies aimed at removal of spores from surfaces.


Asunto(s)
Bacillus cereus/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Clostridioides difficile/metabolismo , Proteoma/metabolismo , Esporas Bacterianas/metabolismo , Bacillus cereus/fisiología , Adhesión Bacteriana , Clostridioides difficile/fisiología , Farmacorresistencia Bacteriana , Microbiología de Alimentos , Peptidoglicano/metabolismo , Estructura Terciaria de Proteína
16.
Infect Immun ; 81(11): 4071-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959722

RESUMEN

Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunación/métodos , Administración Intranasal , Administración a través de la Mucosa , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/administración & dosificación , Carga Bacteriana , Técnicas de Visualización de Superficie Celular , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Femenino , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/microbiología , Esporas Bacterianas/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación
17.
Sci Rep ; 13(1): 14941, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696924

RESUMEN

Up to 25% of the US population harbor Clostridioides difficile in the gut. Following antibiotic disruption of the gut microbiota, C. difficile can act as an opportunistic pathogen and induce potentially lethal infections. Consequently, reducing the colonization of C. difficile in at-risk populations is warranted, prompting us to identify and characterize a probiotic candidate specifically targeting C. difficile colonization. We identified Bacillus velezensis DSM 33864 as a promising strain to reduce C. difficile levels in vitro. We further investigated the effects of B. velezensis DSM 33864 in an assay including human fecal medium and in healthy or clindamycin-treated mouse models of C. difficile colonization. The addition of B. velezensis DSM 33864 to human fecal samples was shown to reduce the colonization of C. difficile in vitro. This was supported in vivo where orally administered B. velezensis DSM 33864 spores reduced C. difficile levels in clindamycin-treated mice. The commensal microbiota composition or post-antibiotic reconstitution was not impacted by B. velezensis DSM 33864 in human fecal samples, short-, or long-term administration in mice. In conclusion, oral administration of B. velezensis DSM 33864 specifically reduced C. difficile colonization in vitro and in vivo without adversely impacting the commensal gut microbiota composition.


Asunto(s)
Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Clindamicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides
18.
Front Immunol ; 14: 1246826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881438

RESUMEN

Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated Bacillus subtilis spores. The candidate conferred significant protection against Mycobacterium. tuberculosis challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG. We then immunized rhesus macaques with BCG intradermally, and subsequently boosted with one intradermal and one aerosol dose of Spore-FP1, prior to challenge with low dose aerosolized M. tuberculosis Erdman strain. Following vaccination, animals did not show any adverse reactions and displayed higher antigen specific cellular and antibody immune responses compared to BCG alone but this did not translate into significant improvement in disease pathology or bacterial burden in the organs.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Cobayas , Animales , Vacuna BCG , Macaca mulatta , Antígenos Bacterianos , Tuberculosis/prevención & control , Esporas
19.
Biochim Biophys Acta ; 1811(3): 177-85, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21215325

RESUMEN

Spore-forming Bacillus species capable of synthesising carotenoid pigments have recently been isolated. To date the detailed characterisation of these carotenoids and their formation has not been described. In the present article biochemical analysis on the carotenoids responsible for the yellow/orange pigmentation present in Bacilli has been carried out and the identity of the carotenoids present was elucidated. Chromatographic, UV/Vis and Mass Spectral (MS) data have revealed the exclusive presence of a C(30) carotenoid biosynthetic pathway in Bacillus species. Apophytoene was detected representing the first genuine carotenoid formed by this pathway. Cultivation in the presence of diphenylamine (DPA), a known inhibitor of pathway desaturation resulted in the accumulation of apophytoene along with other intermediates of desaturation (e.g. apophytofluene and apo-ζ-carotene). The most abundant carotenoids present in the Bacillus species were oxygenated derivatives of apolycopene, which have either undergone glycosylation and/or esterification. The presence of fatty acid moieties (C(9) to C(15)) attached to the sugar residue via an ester linkage was revealed by saponification and MS/MS analysis. In source fragmentation showed the presence of a hexose sugar associated with apolycopene derivatives. The most abundant apocarotenoids determined were glycosyl-apolycopene and glycosyl-4'-methyl-apolycopenoate esters. Analysis of these carotenoids over the developmental formation of spores revealed that 5-glycosyl-4'-methyl-apolycopenoate was related to sporulation. Potential biosynthetic pathways for the formation of these apocarotenoids in vegetative cells and spores have been reconstructed from intermediates and end-products were elucidated.


Asunto(s)
Bacillus/química , Bacillus/fisiología , Carotenoides/biosíntesis , Carotenoides/química , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/química , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA