Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 535(7611): 308-12, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27362226

RESUMEN

Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization.


Asunto(s)
Segregación Cromosómica , Cromosomas Humanos/metabolismo , Antígeno Ki-67/metabolismo , Mitosis , Modelos Biológicos , Tensoactivos/química , Fenómenos Biomecánicos , Compartimento Celular , Cromatina/metabolismo , Cromosomas Humanos/química , Humanos , Antígeno Ki-67/química , Antígeno Ki-67/genética , Membrana Nuclear/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Solventes/química , Huso Acromático/metabolismo , Electricidad Estática
2.
Dev Cell ; 27(4): 469-78, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286828

RESUMEN

Successful segregation of chromosomes during mitosis and meiosis depends on the action of the ring-shaped condensin complex, but how condensin ensures the complete disjunction of sister chromatids is unknown. We show that the failure to segregate chromosome arms, which results from condensin release from chromosomes by proteolytic cleavage of its ring structure, leads to a DNA damage checkpoint-dependent cell-cycle arrest. Checkpoint activation is triggered by the formation of chromosome breaks during cytokinesis, which proceeds with normal timing despite the presence of lagging chromosome arms. Remarkably, enforcing condensin ring reclosure by chemically induced dimerization just before entry into anaphase is sufficient to restore chromosome arm segregation. We suggest that topological entrapment of chromosome arms by condensin rings ensures their clearance from the cleavage plane and thereby avoids their breakage during cytokinesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Rotura Cromosómica , Segregación Cromosómica , Cromosomas Fúngicos/genética , Citocinesis/fisiología , Proteínas de Unión al ADN/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Saccharomyces cerevisiae/genética
3.
Trends Cell Biol ; 21(9): 552-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21763138

RESUMEN

The correct segregation of eukaryotic genomes requires the resolution of sister DNA molecules and their movement into opposite halves of the cell before cell division. The dynamic changes chromosomes need to undergo during these events depend on the action of a multi-subunit SMC (structural maintenance of chromosomes) protein complex named condensin, but its molecular function in chromosome segregation is still poorly understood. Recent studies suggest that condensin has a role in the removal of sister chromatid cohesin, in sister chromatid decatenation by topoisomerases, and in the structural reconfiguration of mitotic chromosomes. In this review we discuss possible mechanisms that could explain the variety of condensin actions during chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , ADN-Topoisomerasas/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus/metabolismo , Cohesinas
4.
Nat Struct Mol Biol ; 18(8): 894-901, 2011 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-21765419

RESUMEN

The multisubunit condensin complex is essential for the structural organization of eukaryotic chromosomes during their segregation by the mitotic spindle, but the mechanistic basis for its function is not understood. To address how condensin binds to and structures chromosomes, we have isolated from Saccharomyces cerevisiae cells circular minichromosomes linked to condensin. We find that either linearization of minichromosome DNA or proteolytic opening of the ring-like structure formed through the connection of the two ATPase heads of condensin's structural maintenance of chromosomes (SMC) heterodimer by its kleisin subunit eliminates their association. This suggests that condensin rings encircle chromosomal DNA. We further show that release of condensin from chromosomes by ring opening in dividing cells compromises the partitioning of chromosome regions distal to centromeres. Condensin hence forms topological links within chromatid arms that provide the arms with the structural rigidity necessary for their segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Sitios de Unión , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
5.
Cell Stem Cell ; 7(4): 424-6, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20887946

RESUMEN

To control cell-type specific gene expression, transcription factors bound at distant enhancer sites need to come into the vicinity of promoters. In a recent Nature article, Kagey et al. (2010) provide evidence that Mediator and Cohesin protein complexes cooperate in the formation of enhancer-promoter DNA loops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA