RESUMEN
This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites. During the last decades major advances in understanding the adsorption and phase behavior of fluids confined in ordered nanoporous materials have been made, which led to major progress in the physisorption characterization methodology (summarized in the 2015 IUPAC report on physisorption characterization). Here we discuss progress and challenges for the physisorption characterization of nanoporous solids exhibiting various levels of porosity from micro- to macropores. While physisorption allows one to assess micro- and mesopores, a widely employed method for textural analysis of macroporous materials is mercury porosimetry and we also review important insights associated with the underlying mechanisms governing mercury intrusion/extrusion experiments. Hence, although the main focus of this review is on physical adsorption, we strongly emphasize the importance of combining advanced physical adsorption with other complementary experimental techniques for obtaining a reliable and comprehensive understanding of the texture of hierarchically structured materials.
RESUMEN
Zeolites are widely used in industrial processes, mostly as catalysts or adsorbents. Increasing their micropore volume could further improve their already exceptional catalytic and separation performances. We report a tunable extraction of zeolite framework cations (Si, Al) on a faujasite-type zeolite, the archetype of molecular sieves with cages and the most widely used as a catalyst and sorbent; this results in ca. 10% higher micropore volume with limited impact on its thermal stability. This increased micropore volume results from the opening of some of the small (sodalite) cages, otherwise inaccessible to most molecules. As more active sites become accessible, the catalytic performances for these modified zeolites are substantially improved. The method, based on etching with NH4F, is also applicable to other cage-containing microporous molecular sieves, where some of the most industrially relevant zeolites are found.
RESUMEN
Ordered mesoporous CMK carbons and periodic mesoporous organosilica (PMO) materials have been characterized by combining nitrogen (77.4 K) and argon (87.3 K) adsorption with recently developed quenched solid density functional theory (QSDFT). Systematic, high-resolution water adsorption experiments have been performed in the temperature range from 298 to 318 K in order to ascertain the effect of surface chemistry (using periodic mesoporous organosilicas (PMOs) of given pore size) and pore size/pore geometry (using CMK-3, CMK-8 carbons) on the adsorption, pore filling, condensation and hysteresis behavior. These data reveal how the interplay between confined geometry effects and the strength of the adsorption forces influence the adsorption, wetting, and phase behavior of pore fluids. Further, our results indicate that water adsorption is quite sensitive to both small changes in pore structure and surface chemistry, showing the potential of water adsorption as a powerful complementary tool for the characterization of nanoporous solids.
RESUMEN
The use of colloidal crystals with various primary particle sizes as templates leads to the formation of three-dimensionally ordered mesoporous (3DOm) carbons containing spherical pores with tailorable pore size and extremely high pore volumes. We present a comprehensive structural characterization of these novel carbons by using nitrogen (77.4 K) and argon (87.3 K) adsorption coupled with the application of novel, dedicated quenched solid density functional theory (QSDFT) methods which assume correctly the underlying spherical pore geometry and also the underlying adsorption mechanism. The observed adsorption isotherms are of Type IV with Type H1-like hysteresis, despite the fact that pore blocking affects the position of the desorption branch. This follows also from detailed, advanced scanning hysteresis experiments which not only allow one to identify the underlying mechanisms of hysteresis, but also provide complementary information about the texture of these unique porous materials. This work addresses the problem of pore size analysis of novel, ordered porous carbons and highlights the importance of hysteresis scanning experiments for textural analysis of the pore network.
Asunto(s)
Argón/química , Carbono/química , Nitrógeno/química , Adsorción , Modelos Moleculares , Conformación Molecular , Nanopartículas/química , Tamaño de la Partícula , Porosidad , Presión , Teoría Cuántica , Dióxido de Silicio/químicaRESUMEN
Porous carbons synthesized by KOH activation of petroleum coke can have high surface areas, over 3000 m(2)/g, and high CO(2) sorption capacity, over 15 wt % at 1 bar. This makes them attractive sorbents for carbon capture from combustion flue gas. Quenched solid density functional theory (QSDFT) analysis of high-resolution nitrogen-sorption data for such materials leads to the conclusion that it is the pores smaller than 1 nm in diameter that fill with high-density CO(2) at atmospheric pressure. Upon increasing pressure, larger and larger pores are filled, up to about 4 nm at 10 bar. An ideal CO(2)/N(2) selectivity of such carbon materials tends to decrease substantially upon increasing pressure, for example, from about 8-10 at 1 bar to about 4-5 at 10 bar. All in all, this work confirms the robust CO(2)-filling properties of porous carbon sorbents, their low-pressure selectivity advantages, and points to the critical role of <1 nm pores that can be controlled with activation conditions.
Asunto(s)
Dióxido de Carbono/química , Carbono/química , Modelos Químicos , Nanoporos , Tamaño de la Partícula , Teoría Cuántica , Adsorción , Hidróxidos/química , Nitrógeno/química , Porosidad , Compuestos de Potasio/química , Propiedades de Superficie , TemperaturaRESUMEN
Five non-interpenetrated microporous coordination polymers (MCPs) are derived by vertex desymmetrization using linkers with symmetry inequivalent coordinating groups, and these MCPs include properties such as rare metal clusters, new network topologies, and supramolecular isomerism. Gas sorption in polymorphic frameworks, UMCM-152 and UMCM-153 (based upon a copper-coordinated tetracarboxylated triphenylbenzene linker), reveals nearly identical properties with BET surface areas in the range of 3300-3500 m(2)/g and excess hydrogen uptake of 5.7 and 5.8 wt % at 77 K. In contrast, adsorption of organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) shows remarkably different capacities, providing direct evidence that liquid-phase adsorption is not solely dependent on surface area or linker/metal cluster identity. Structural features present in MCPs derived from these reduced symmetry linkers include the presence of more than one type of Cu-paddlewheel in a structure derived from a terphenyl tricarboxylate (UMCM-151) and a three-bladed zinc paddlewheel metal cluster in an MCP derived from a pentacarboxylated triphenylbenzene linker (UMCM-154).
Asunto(s)
Compuestos Organometálicos/síntesis química , Polímeros/síntesis química , Adsorción , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Polímeros/química , Porosidad , Propiedades de SuperficieRESUMEN
The stability of a variety of microporous coordination polymers (MCPs) to water-containing solutions was studied using powder X-ray diffraction. It was determined that the stability of the MCP is related to the metal cluster present in the structure with trinuclear chromium clusters more stable than copper paddlewheel clusters which are more stable than basic zinc acetate clusters. Zn(2-methylimidizolate)(2) was found to be more water stable than zinc MCPs with carboxylate linkers; however, extended exposure to water led to decomposition of all zinc-based MCPs. Matériaux de l'Institut Lavoisier (MIL)-100 was also found to be completely water stable and was used to adsorb the pharmaceuticals furosemide and sulfasalazine from water with large uptakes achievable at low concentrations, indicating that the adsorption of wastewater contaminants may be a feasible application for these materials.
Asunto(s)
Furosemida/química , Polímeros/química , Sulfasalazina/química , Agua/química , Adsorción , Modelos Moleculares , Conformación Molecular , Porosidad , Difracción de Rayos XRESUMEN
Microporous coordination polymers (MCPs) are demonstrated to be efficient adsorbents for the removal of the organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from model diesel fuel and diesel fuel. For example, packed bed breakthrough experiments utilizing UMCM-150 find capacities of 25.1 g S/kg MCP for DBT and 24.3 g S/kg MCP for DMDBT from authentic diesel indicating that large amounts of fuel are desulfurized before the breakthrough point. Unlike activated carbons, where selectivity has been a problem, MCPs selectively adsorb the organosulfur compounds over other, similar components of diesel. Complete regeneration using toluene at modest temperatures is achieved. The attainment of high selectivities and capacities, particularly for the adsorption of the refractory compounds that are difficult to remove using current desulfurization techniques, in a reversible sorbent indicates that fuel desulfurization may be an important application for MCPs.
RESUMEN
The utility of microporous coordination polymers (MCPs) for the adsorption of large organosulfur compounds (benzothiophene, dibenzothiophene, 4,6-dimethyldibenzothiophene) found in fuels is demonstrated. Large capacities are obtained at both low and high sulfur concentrations. For 4,6-dimethyldibenzothiophene, the compound most difficult to remove using current industrial techniques, a capacity of 41 g S/kg MCP at 1500 ppmw S is achieved by UMCM-150. It was determined that the size/shape of the pores in the MCP, rather than the surface area or pore volume, is the most important factor controlling adsorption capacity.
RESUMEN
We describe the simple preparation of nitrocellulose gels and high surface area (300 + m(2) g(-1)) aerogels and their hierarchical pore structures. The solvent in which the gels form greatly influences the pore geometry and size distribution of the gels in both the macro- and mesopore domains.
RESUMEN
Hierarchical zeolites are a class of microporous catalysts and adsorbents that also contain mesopores, which allow for fast transport of bulky molecules and thereby enable improved performance in petrochemical and biomass processing. We used repetitive branching during one-step hydrothermal crystal growth to synthesize a new hierarchical zeolite made of orthogonally connected microporous nanosheets. The nanosheets are 2 nanometers thick and contain a network of 0.5-nanometer micropores. The house-of-cards arrangement of the nanosheets creates a permanent network of 2- to 7-nanometer mesopores, which, along with the high external surface area and reduced micropore diffusion length, account for higher reaction rates for bulky molecules relative to those of other mesoporous and conventional MFI zeolites.
RESUMEN
N-Heteroarene substitution into biphenyl-based linkers enhances the uptake of electron-rich organosulfur molecules in a series of isostructural microporous coordination polymers.
RESUMEN
Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.
RESUMEN
Patterning surfaces with features on the low end of the nanoscale can efficiently be accomplished with physisorbed monolayers. Here, cocrystallization is revealed as a powerful approach toward dramatically increasing the periodicity of surface features and expanding the length scale on which these patterns can form. By variation of the ratio of adsorbates in solution, surface composition can be controlled such that features on the length scale of several molecules are obtained, offering a facile approach to surface nanopatterning.