Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 29(33): 335703, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-29790860

RESUMEN

Monolayer transition metal dichalcogenides (TMDs) constitute a family of materials, in which coupled spin-valley physics can be explored and which could find applications in novel optoelectronic devices. However, before applications can be designed, a scalable method of monolayer extraction is required. Liquid phase exfoliation is a technique providing large quantities of the monolayer material, but the spin-valley properties of thus obtained TMDs are unknown. In this work, we employ steady-state and time-resolved photoluminescence (PL) to investigate the relaxation dynamics of localized excitons (LXs) in liquid exfoliated WS2. The results reveal that the circular polarization lifetime of the PL exceeds by at least an order of magnitude the PL lifetime. A rate equations model allows us to reproduce quantitatively the experimental data and to conclude that the observed large and long-lived PL polarization originates from efficient trapping of free excitons at localization sites hindering the intervalley relaxation. Furthermore, our results show that the depolarization process is inefficient for LXs. We discuss various mechanisms leading to this effect such as suppression of intervalley scattering of the LXs or inefficient spin relaxation of the holes.

2.
Phys Chem Chem Phys ; 16(19): 9015-22, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24695542

RESUMEN

Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods.


Asunto(s)
Fluorescencia , Oro/química , Complejos de Proteína Captadores de Luz/química , Nanotubos/química , Oro/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA