Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001606

RESUMEN

Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.


Asunto(s)
Amoníaco/química , Glutamina/química , Péptidos/química , Teoría Funcional de la Densidad , Fluorescencia , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Óptica y Fotónica/métodos
2.
J Phys Chem A ; 124(46): 9503-9512, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33166141

RESUMEN

Fluorescence is commonly exploited to probe microscopic properties. An important example is tryptophan in protein environments, where variations in fluorescence quantum yield, and in absorption and emission maxima, are used as indicators of changes in the environment. Modeling the fluorescence quantum yield requires the determination of both radiative and nonradiative decay constants, both on the potential energy surface of the excited fluorophore. Furthermore, the inclusion of complex environments implies their accurate representation as well as extensive configurational sampling. In this work, we present and test various methodologies based on time-dependent density functional theory (TDDFT) and quantum mechanics/molecular mechanics (QM/MM) dynamics that take all of these requirements into account to provide a quantitative prediction of the effect of the environment on the fluorescence quantum yield of indole, a tryptophan fluorophore. This investigation paves the way for applications to the realistic spectroscopic characterization of the local protein environment of tryptophan from computer simulations.

3.
J Chem Theory Comput ; 20(9): 3864-3878, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38634760

RESUMEN

Recent experimental findings reveal nonconventional fluorescence emission in biological systems devoid of conjugated bonds or aromatic compounds, termed non-aromatic fluorescence (NAF). This phenomenon is exclusive to aggregated or solid states and remains absent in monomeric solutions. Previous studies focused on small model systems in vacuum show that the carbonyl stretching mode along with strong interaction of short hydrogen bonds (SHBs) remains the primary vibrational mode explaining NAF in these systems. In order to simulate larger model systems taking into account the effects of the surrounding environment, in this work we propose using the density functional tight-binding (DFTB) method in combination with non-adiabatic molecular dynamics (NAMD) and the mixed quantum/molecular mechanics (QM/MM) approach. We investigate the mechanism behind NAF in the crystal structure of l-pyroglutamine-ammonium, comparing it with the related nonfluorescent amino acid l-glutamine. Our results extend our previous findings to more realistic systems, demonstrating the efficiency and robustness of the proposed DFTB method in the context of NAMD in biological systems. Furthermore, due to its inherent low computational cost, this method allows for a better sampling of the nonradiative events at the conical intersection which is crucial for a complete understanding of this phenomenon. Beyond contributing to the ongoing exploration of NAF, this work paves the way for future application of this method in more complex biological systems such as amyloid aggregates, biomaterials, and non-aromatic proteins.

4.
J Phys Chem B ; 126(38): 7203-7211, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36128666

RESUMEN

While in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent. Despite this progress, many aspects of this phenomenon remain uncharted territory. In this Perspective, we lay down the state-of-the-art in the field highlighting the open questions from both experimental and theoretical fronts in this fascinating emerging area of non-aromatic fluorescence.


Asunto(s)
Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA