Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 17: 74, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26801623

RESUMEN

BACKGROUND: The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite's ability to use a particular plant as a host. Thus, understanding the interactions between the plant and mites with different host adaptation status allows the identification of functional plant defenses and ways mites can evolve to avoid them. RESULTS: The grapevine genome-wide transcriptional responses to spider mite strains that are non-adapted and adapted to grapevine as a host were examined. Comparative transcriptome analysis of grapevine responses to these mite strains identified the existence of weak responses induced by the feeding of the non-adapted strain. In contrast, strong but ineffective induced defenses were triggered upon feeding of the adapted strain. A comparative meta-analysis of Arabidopsis, tomato and grapevine responses to mite feeding identified a core of 36 highly conserved genes involved in the perception, regulation and metabolism that were commonly induced in all three species by mite herbivory. CONCLUSIONS: This study describes the genome-wide grapevine transcriptional responses to herbivory of mite strains that differ in their ability to use grapevine as a host. It raises hypotheses whose testing will lead to our understanding of grapevine defenses and mite adaptations to them.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Tetranychidae/fisiología , Transcriptoma/genética , Vitis/genética , Vitis/parasitología , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología
2.
BMC Plant Biol ; 12: 181, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23035802

RESUMEN

BACKGROUND: Vegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons. RESULTS: Gene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation. CONCLUSIONS: This work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Vitis/crecimiento & desarrollo , Vitis/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/genética , Factores de Tiempo
3.
PLoS One ; 9(3): e92339, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637773

RESUMEN

In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs initially share a common transcriptional program related to cell proliferation and growth functions. In later developmental stages they showed organ specific gene expression programs related to the particular differentiation processes taking place in each organ. In this way, tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences displayed higher transcriptional activity for genes encoding transcription factors, mainly those belonging to the MADS-box gene family. The expression profiles of selected transcription factors related with inflorescence and flower meristem identity and with flower organogenesis were generally conserved with respect to their homologs in model species. Regarding tendrils, it was interesting to find that genes related with reproductive development in other species were also recruited for grapevine tendril development. These results suggest a role for those genes in the regulation of basic cellular mechanisms common to both developmental processes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Transcripción Genética , Vitis/anatomía & histología , Vitis/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Análisis de Componente Principal , Reproducción/genética , Transcriptoma/genética , Vitis/crecimiento & desarrollo
4.
BMC Res Notes ; 5: 213, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-22554261

RESUMEN

BACKGROUND: The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. RESULTS: In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, "Can we uniquely map 8X predicted genes to 12X predicted genes?" The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. CONCLUSIONS: The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).


Asunto(s)
Genes de Plantas/genética , Genoma de Planta/genética , Anotación de Secuencia Molecular/métodos , Vitis/genética , Secuencia de Bases , Redes Reguladoras de Genes/genética , Homología de Secuencia de Ácido Nucleico
5.
Plant Physiol ; 149(1): 354-69, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18997115

RESUMEN

MIKC(C)-type MADS box genes encode transcription factors that play crucial roles in plant growth and development. Analysis of the grapevine (Vitis vinifera) genome revealed up to 38 MIKC(C)-type genes. We report here a complete analysis of this gene family regarding their phylogenetic relationships with homologous genes identified in other sequenced dicot genomes, their genome location, and gene structure and expression. The grapevine genes cluster in 13 subfamilies with their Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) counterparts. The lack of recent whole genome duplications in grapevine allows assigning the gene diversification processes observed within each subfamily either to an ancestral polyploidization event predating the divergence of those three species or to later duplication events within each lineage. Expression profiles of MIKC(C)-type genes in vegetative and reproductive organs as well as during flower and tendril development show conserved expression domains for specific subfamilies but also reflect characteristic features of grapevine development. Expression analyses in latent buds and during flower development reveal common features previously described in other plant systems as well as possible new roles for members of some subfamilies during flowering transition. The analysis of MIKC(C)-type genes in grapevine helps in understanding the origin of gene diversification within each subfamily and provides the basis for functional analyses to uncover the role of these MADS box genes in grapevine development.


Asunto(s)
Genes de Plantas , Genoma de Planta , Proteínas de Dominio MADS/genética , Vitis/genética , Bases de Datos Genéticas , Evolución Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA