Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(2): 469-487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180307

RESUMEN

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Asunto(s)
Capsicum , Oxidorreductasas , Capsicum/genética , Capsicum/metabolismo , Zeaxantinas/metabolismo , Frutas/metabolismo , Mutación con Pérdida de Función , Fitomejoramiento , Carotenoides/metabolismo , Xantófilas
2.
Plant Physiol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753298

RESUMEN

Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e., circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 (HDA9) and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.

3.
Ecotoxicol Environ Saf ; 269: 115755, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039847

RESUMEN

Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.


Asunto(s)
ADN Helicasas , Pulmón , ARN Helicasas , Gránulos de Estrés , Humanos , ADN Helicasas/metabolismo , Pulmón/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés/metabolismo , Proteínas Fluorescentes Verdes , Genes Reporteros
4.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952150

RESUMEN

Inhibition of lipid synthesis in sebocytes is essential for acne treatments. The effects of natural product-derived substances on lipid synthesis are unknown. This study investigated the effects of water extract of Mangifera indica leaves (WEML) on lipid synthesis in human sebocytes. Sebocyte differentiation in low serum conditions increased lipid accumulation and proliferator-activated receptor γ expression. WEML treatment significantly inhibited lipid accumulation and adipogenic mRNA expression in sebocytes. Mangiferin, a bioactive compound in WEML, also reduced lipid accumulation and adipogenic mRNA expression via the AKT pathway. Thus, WEML and mangiferin effectively inhibit lipid synthesis in sebocytes, showing promise for acne treatment.

5.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36564017

RESUMEN

In this review, we describe the genomic and physiological features of the yeast species predominantly isolated from Nuruk, a starter for traditional Korean rice wines, and Jang, a traditional Korean fermented soy product. Nuruk and Jang have several prevalent yeast species, including Saccharomycopsis fibuligera, Hyphopichia burtonii, and Debaryomyces hansenii complex, which belong to the CUG clade showing high osmotic tolerance. Comparative genomics revealed that the interspecies hybridization within yeast species for generating heterozygous diploid genomes occurs frequently as an evolutional strategy in the fermentation environment of Nuruk and Jang. Through gene inventory analysis based on the high-quality reference genome of S. fibuligera, new genes involved in cellulose degradation and volatile aroma biosynthesis and applicable to the production of novel valuable enzymes and chemicals can be discovered. The integrated genomic and transcriptomic analysis of Hyphopichia yeasts, which exhibit strong halotolerance, provides insights into the novel mechanisms of salt and osmo-stress tolerance for survival in fermentation environments with a low-water activity and high-concentration salts. In addition, Jang yeast isolates, such as D. hansenii, show probiotic potential for the industrial application of yeast species beyond fermentation starters to diverse human health sectors.


Asunto(s)
Glycine max , Vino , Humanos , Filogenia , Levaduras/genética , Fermentación , Genómica , República de Corea
6.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896657

RESUMEN

In electronic warfare systems, detecting low-probability-of-intercept (LPI) radar signals poses a significant challenge due to the signal power being lower than the noise power. Techniques using statistical or deep learning models have been proposed for detecting low-power signals. However, as these methods overlook the inherent characteristics of radar signals, they possess limitations in radar signal detection performance. We introduce a deep learning-based detection model that capitalizes on the periodicity characteristic of radar signals. The periodic autocorrelation function (PACF) is an effective time-series data analysis method to capture the pulse repetition characteristic in the intercepted signal. Our detection model extracts radar signal features from PACF and then detects the signal using a neural network employing long short-term memory to effectively process time-series features. The simulation results show that our detection model outperforms existing deep learning-based models that use conventional autocorrelation function or spectrogram as an input. Furthermore, the robust feature extraction technique allows our proposed model to achieve high performance even with a shallow neural network architecture and provides a lighter model than existing models.

7.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768431

RESUMEN

Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas
8.
World J Surg Oncol ; 20(1): 169, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643506

RESUMEN

BACKGROUND: Improved understanding of the tumour microenvironment (TME) has enabled remarkable advancements in research on cancer progression in the past few years. It is crucial to understand the nature and function of the TME because precise treatment strategies, including immunotherapy, for managing specific cancers have received widespread attention. The immune infiltrative profiles of neuroblastoma (NB) have not yet been completely illustrated. The purpose of this research was to analyse tumour immune cell infiltration (ICI) in the microenvironment of NB. METHODS: We applied the CIBERSORT and ESTIMATE algorithms to evaluate the ICI status of 438 NB samples. Three ICI models were selected, and ICI scores were acquired. Subgroups with high ICI scores determined based on the presence of immune activation signalling pathways had better overall survival. RESULTS: Genes involved in the immunosuppressive heparan sulphate glycosaminoglycan biosynthesis signalling pathway were markedly enriched in the low ICI score subgroup. It was inferred that patients with high ICI NB subtypes were more likely to respond to immunotherapy and have a better prognosis than those of patients with low ICI NB subtypes. CONCLUSION: Notably, our ICI data not only provide a new clinical and theoretical basis for mining NB prognostic markers related to the microenvironment but also offer new ideas for the development of NB precision immunotherapy methods.


Asunto(s)
Neuroblastoma , Microambiente Tumoral , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Neuroblastoma/genética , Neuroblastoma/terapia , Pronóstico
9.
Food Microbiol ; 105: 104011, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35473972

RESUMEN

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Asunto(s)
Queso , Debaryomyces , Fabaceae , Probióticos , Saccharomycetales , Debaryomyces/genética , Genómica , Odorantes , Filogenia , República de Corea , Saccharomyces cerevisiae , Saccharomycetales/genética , Glycine max
10.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34668849

RESUMEN

This paper presents a polyphasic taxonomic study of a Gram-stain-negative bacterium designated GA093T, a soil isolate capable of benzo(α)pyrene degradation. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain GA093T is a member of the genus Flavobacterium, and formed an independent phylogenetic line while clustering with the type strains of Flavobacterium hibernum, Flavobacterium branchiarum and Flavobacterium hydatis. Strain GA093T was facultatively anaerobic, and could grow at 4-33 °C (optimum, 30 °C), at pH 6-11 (optimum, pH 7) and in the presence of 0-2 % (w/v) NaCl (optimum, 0 %). Strain GA093T was capable of producing acid from various carbon sources, which was comparable to other related species of Flavobacterium. The strain contained MK-6 as the only isoprenoid quinone, iso-C15 : 0 as the major cellular fatty acid, phosphatidylethanolamine and phosphatidylinositol as diagnostic polar lipids, and sym-homospermidine as the major polyamine. The chemotaxonomic properties of strain GA093T were consistent with the general properties of Flavobacterium except the presence of phosphatidylinositol, which distinguished it from other related species. The total stretch of the obtained genome of GA093T was 5.05 Mbp, and the DNA G+C content was 34.79 mol%. The genome contained genes potentially related to the degradation of aromatic hydrocarbons. On the basis of the present polyphasic analysis, strain GA093T was found to have properties that distunguished it as representing a novel species of the genus Flavobacterium, for which the name Flavobacterium hydrocarbonoxydans sp. nov. is proposed. The type strain is GA093T (=KCTC 72594T=LMG 31760T).


Asunto(s)
Flavobacterium , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Contaminación Ambiental , Ácidos Grasos/química , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Fosfolípidos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Environ Microbiol ; 22(1): 310-328, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31680403

RESUMEN

The acquisition of sulfur from environment and its assimilation is essential for fungal growth and activities. Here, we describe novel features of the regulatory network of sulfur metabolism in Ogataea parapolymorpha, a thermotolerant methylotrophic yeast with high resistance to harsh environmental conditions. A short bZIP protein (OpMet4p) of O. parapolymorpha, displaying the combined structural characteristics of yeast and filamentous fungal Met4 homologues, plays a key role as a master regulator of cell homeostasis during sulfur limitation, but also its function is required for the tolerance of various stresses. Domain swapping analysis, combined with deletion analysis of the regulatory domains and genes encoding OpCbf1p, OpMet28p, and OpMet32p, indicated that OpMet4p does not require the interaction with these DNA-binding cofactors to induce the expression of sulfur genes, unlike the Saccharomyces cerevisiae Met4p. ChIP analysis confirmed the notion that OpMet4p, which contains a canonical bZIP domain, can bind the target DNA in the absence of cofactors, similar to homologues in other filamentous fungi. Collectively, the identified unique features of the O. parapolymorpha regulatory network, as the first report on the sulfur regulation by a short yeast Met4 homologue, provide insights into conservation and divergence of the sulfur regulatory networks among diverse ascomycetous fungi.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Azufre/metabolismo , Activación Transcripcional/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Homeostasis/genética
12.
Mol Reprod Dev ; 87(2): 231-240, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930642

RESUMEN

Male infertility is a rising problem around the world. Often the cause of male infertility is unclear, and this hampers diagnosis and treatment. Spermatogenesis is a complex process under sophisticated regulation by many testis-specific genes. Here, we report the testis-specific gene 1700102P08Rik is conserved in both the human and mouse and highly expressed in spermatocytes. To investigate the role of 1700102P08Rik in male fertility, knockout mice were generated by CRISPR-Cas9. 1700102P08Rik knockout male mice were infertile with smaller testis and epididymis, but female knockout mice retained normal fertility. Spermatogenesis in the 1700102P08Rik knockout male mouse was arrested at the spermatocyte stage, and no sperm were found in the epididymis. The deletion of 1700102P08Rik causes apoptosis in the testis but did not affect the serum concentration of testosterone, luteinizing hormone, and follicle-stimulating hormone or the synapsis and recombination of homologous chromosomes. We also found that 1700102P08Rik is downregulated in spermatocyte arrest in men. Together, these results indicate that the 1700102P08Rik gene is essential for spermatogenesis and its dysfunction leads to male infertility.


Asunto(s)
Fertilidad/genética , Genes Esenciales , Infertilidad Masculina/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas/genética , Testículo/fisiopatología , Animales , Apoptosis/genética , Células Cultivadas , Regulación hacia Abajo/genética , Femenino , Hormona Folículo Estimulante Humana/sangre , Técnicas de Inactivación de Genes , Humanos , Infertilidad Masculina/sangre , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Espermatocitos/metabolismo , Espermatogénesis/genética , Testículo/patología , Testosterona/sangre
13.
BMC Nephrol ; 21(1): 514, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243164

RESUMEN

BACKGROUND: A renal biopsy is needed to define active inflammatory infiltration and guide therapeutic management in drug-induced acute tubulointerstitial nephritis (D-ATIN). However, factors such as various contraindications, refusal of informed consent and limited technical support may stop the biopsy process. It is thus of great importance to explore approaches that could deduce probable pathologic changes. METHODS: A total of 81 biopsy-proven D-ATIN patients were enrolled from a prospective cohort of ATIN patients at Peking University First Hospital. The systemic inflammation score (SIS) was developed based on the CRP and ESR levels at biopsy, and patients were divided into high-SIS, median-SIS, and low-SIS groups. The demographic data, clinicopathologic features, and renal outcomes were compared. RESULTS: The SIS was positively correlated with inflammatory cell infiltration and was inversely correlated with interstitial fibrosis. The number of interstitial inflammatory cells increased significantly with increasing SISs. The proportions of neutrophils and plasma cells were the highest in the high-SIS group compared with the other two groups. Prednisone (30-40 mg/day) was prescribed in all patients. The high-SIS group tended to have more favorable renal restoration than the other two groups. By 12 months postbiopsy, a decreased eGFR (< 60 mL/min/1.73 m2) was observed in 66.7% of medium-SIS patients, 32.4% of high-SIS patients, and 30.4% of low-SIS patients. CONCLUSION: The SIS was positively correlated with active tubulointerstitial inflammation and therefore could help to aid therapeutic decisions in D-ATIN.


Asunto(s)
Sedimentación Sanguínea , Proteína C-Reactiva/metabolismo , Nefritis Intersticial/sangre , Adulto , Biopsia , Femenino , Glucocorticoides/uso terapéutico , Humanos , Inflamación/complicaciones , Riñón/patología , Masculino , Persona de Mediana Edad , Nefritis Intersticial/inducido químicamente , Nefritis Intersticial/tratamiento farmacológico , Nefritis Intersticial/patología , Prednisona/uso terapéutico , Estudios Prospectivos
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(2): 193-196, 2019 Mar.
Artículo en Zh | MEDLINE | ID: mdl-31106538

RESUMEN

OBJECTIVE: To investigate the regulation effect of α-momordicin (α-MMC) on the synthesis and secretion of cytokines in hepatocytes cells. METHODS: Hepatocytes L02 were treated with 189 µg/mL α-MMC with culture supernatant and lysate samples were harvested in different timepoint. Expressions of T-helper 17 (TH17) cytokine profile in samples were detected by the Bio-Plex 200 suspension chip assay system. RESULTS: Compared with 0 h, after the α-MMC treatment of L02 hepatocytes for 2 h, 4 h and 8 h, the intracellular synthesis of cytokines interleukin (IL)-1b, IL-6, IL-17A, IL-31, IL-33, soluble CD40 ligand (sCD40L), tumor necrosis factor-α (TNF-α) were all significantly decreased (P<0.05), and IL-6, IL-4, IL-17A, and sCD40L secreted into the extracellular fluid also decreased significantly (P<0.05). CONCLUSION: α-MMC can significantly inhibit the synthesis and secretion of cytokines such as IL-6, IL-17A and TNF-α in hepatocytes, which may become a side effect of its anti-tumor application.


Asunto(s)
Citocinas/metabolismo , Hepatocitos/efectos de los fármacos , Esteroles/farmacología , Ligando de CD40 , Células Cultivadas , Hepatocitos/metabolismo , Humanos , Factor de Necrosis Tumoral alfa
15.
Zhongguo Zhong Yao Za Zhi ; 42(18): 3509-3515, 2017 Sep.
Artículo en Zh | MEDLINE | ID: mdl-29218935

RESUMEN

Tobacco black shank is one of the most harmful soil-borne diseases infected by Phytophthora parasitica. In order to probe the control method to this disease, in this study, the mycelial growth rate method was employed to investigate the antifungal effects of extracts from stem-leaf and root, root exudates, and their combination of Scrophularia ningpoensis, Chuanmingshen violaceum and Pinellia ternata The results showed that: ①Stem-leaf and root extracts of S. ningpoensis, C. violaceum and P. ternata exhibited different antifungal activities, and the inhibition increased with the increase of extract concentration. The antifungal effect of S. ningpoensis extracts at 0.5 g•mL⁻¹ was the strongest than other medicinal plants, the inhibition rate of steam-leaf and root extracts reached 74.88%, 69.27%, respectively. The inhibitory effect of C. violaceum and P. ternata was relatively lower, however, there is a significant gain effect after combination of steam-leaf and root extracts of C. violaceum. ②The root exudates of S. ningpoensis, C. violaceum and P. ternata showed fungistasis to Phytophthora nicotianae, and fungistasis was enhanced with the increase of root exudate concentration. The antifungal effect in the order of C. violaceum > S. ningpoensis > P. ternata. ③The antifungal activity of combination of extract and root exudate from S. ningpoensis was similar with the effect of C. violaceum, they were both stronger than P. ternata, and the antifungal activity for three combination were located between the antifungal activity of their extracts and root exudates. S. ningpoensis and C. violaceum can be potentially applied to prevent and control the tobacco black shank.


Asunto(s)
Fungicidas Industriales/farmacología , Fitoquímicos/farmacología , Phytophthora/efectos de los fármacos , Extractos Vegetales/farmacología , Apiaceae/química , Pinellia/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Exudados de Plantas/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Scrophularia/química
16.
Exp Cell Res ; 339(2): 310-9, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26428665

RESUMEN

Reactive astrocytosis has been considered either beneficial or detrimental effection in neuroinflammatory disease. HSPA12B, a new member belongs to the 70-kDa family of heat shock proteins (HSP70) which could modulate inflammatory response, also shows an connection with the astrocyte activation. Recently, it was reported that Src-Suppressed-C Kinase Substrate (SSeCKS) was detected in heat shock protein A12B (HSPA12B) interacting proteins using a yeast 2-hybrid system. SSeCKS, a major Lipopolysaccharide (LPS) response protein, has been involved in regulating astrocyte activation via production of proinflammatory factor in CNS inflammation. In this study, we found HSPA12B might regulate the expression and activity of SSeCKS to promote astrocyte inflammatory activation and release of inflammatory mediators, such as TNF-α and IL-1ß in spinal cord primary astroglial cultures exposed to LPS treatment. The promoting mechanism of interaction between HSPA12B and SSeCKS on LPS-induced astrocyte activation was mediated via the activation of JNK and p38 signaling pathways but not ERK1/2 MAPK signaling pathway. HSPA12B binded to SSeCKS via its both N terminus consisted of amino acids 1-330 and C terminus consisted of amino acids 1278-1596. And, in vivo, we confirmed the interaction between HSPA12B and SSeCKS of astrocyte activation in the pathogenesis of EAE. The regulatory mechanisms of HSPA12B-SSeCKS interaction may possibly be the key therapeutic strategy of neuroinflammatory disease.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Astrocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Inflamación/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Células Cultivadas , Femenino , Cobayas , Células HEK293 , Humanos , Inflamación/inmunología , Lipopolisacáridos/farmacología , Ratas , Ratas Endogámicas Lew
17.
J Am Soc Nephrol ; 26(5): 1195-204, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25205734

RESUMEN

Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN.


Asunto(s)
Proteínas Sanguíneas/genética , Activación de Complemento , Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/metabolismo , Glomerulonefritis por IGA/sangre , Adulto , Alelos , Estudios de Casos y Controles , Complemento C3a/metabolismo , Factor H de Complemento/genética , Estudios Transversales , Femenino , Mesangio Glomerular/metabolismo , Glomerulonefritis por IGA/genética , Humanos , Inmunoglobulina A/sangre , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
18.
Zhongguo Zhong Yao Za Zhi ; 41(24): 4556-4563, 2016 Dec.
Artículo en Zh | MEDLINE | ID: mdl-28936837

RESUMEN

Soil microbes are the important indicator of soil quality. For exploring Chuanminshen violaceum planting to microbial effects in tobacco soil, this paper adopted Illumina MiSeq high-throughput sequencing to research the change of bacteria and fungi at the phylum and genus in the soil. The results showed that the Ch. violaceum planting increased the biodiversity of bacteria and fungi. The influence on fungi was greater than that on bacteria. It greatly increased the sequence of fungi, it obtained 32 978 16S rDNA and 32 229 18S rDNA sequence number. There was no change of the top three phylums in bacteria, but the content changed, Proteobacteria and Acidobacteria reduced by 1.73% and 1.4% respectively, and Actinobacteria increased by 0.65%. The advantage phylum Ascomycete in tobacco reduced by 27.99% to be second advantage phylum after Ch. violaceum planting, and the second advantage phylum Basidiomycete increased by 23.69% to become the first dominant fungi. At the genus, Ch. violaceum planting changed the order of dominant genus and the abundance was also changed. Some changed largely such as uncultured Acidobacteriaceae Subgroup-1, Gemmatimonas, Subgroup-2,uncultured Nitrosomonadaceae for bacteria, norank Sordariales, norank Agaricomycetes, Phialophora for fungi. Especially the rotation increased antagonistic microbes and physiological microbes and decreased pathogenic microbes. So the Ch. violaceum planting can improve the microbe community in tobacco soil.


Asunto(s)
Agricultura/métodos , Apiaceae/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo , Microbiología del Suelo , Apiaceae/microbiología , Bacterias/clasificación , Biodiversidad , Hongos/clasificación , ARN Ribosómico 16S , Suelo , Nicotiana/microbiología
19.
Biochem Biophys Res Commun ; 457(3): 391-7, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582778

RESUMEN

In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Receptores ErbB/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión/metabolismo , Saponinas/farmacología , Triterpenos/farmacología , Animales , Antioxidantes/farmacología , Corteza Cerebral/lesiones , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Técnicas de Silenciamiento del Gen , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Activación Transcripcional/efectos de los fármacos
20.
J Nanosci Nanotechnol ; 15(1): 334-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328355

RESUMEN

The mesoporous monolithic carbon (MMC) foams and carbon tubes were newly fabricated in cm-scale using the mixture of triblock copolymers and phenol/HCHO resin precursors. The regular mesoporosity were formed in the body of MMC foam and carbon fibers. In this work, the organic phases containing chiral ARCA adsorbent and a phase transfer catalyst were coated on the surfaces of mesoporous carbon support, and this ARCA/carbon mixture was adopted for the enantioselective separation of amino acid in the circulation system. (S)-ARCA coated MMC support showed high selcetivity up to 90% for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures.


Asunto(s)
Aminoácidos/química , Aminoácidos/aislamiento & purificación , Carbono/química , Adsorción , Fibra de Carbono , Porosidad , Dióxido de Silicio , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA