Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(32)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38710165

RESUMEN

For deep ultraviolet (UV-C) photodetectors, gallium oxide (Ga2O3) is a suitable candidate owing to its intrinsic ultra-wide band gap and high stability. However, its detection is limited within the UV-C region, which restricts it to cover a broad range, especially in visible and near-infrared (NIR) region. Therefore, constructing a heterostructure of Ga2O3with an appropriate material having a narrow band gap is a worthwhile approach to compensate for it. In this category, PtS2group-10 transitional metal dichalcogenide stands at the top owing to its narrow band gap (0.25-1.65 eV), high mobility, and stability for heterostructure synthesis. Moreover, heterostructure with Ga2O3sensing in UV and PtS2broad response in visible and IR range can broaden the spectrum from UV to NIR and to build broadband photodetector. In this work, we fabricated a 2D-3D PtS2-x/Ga2O3heterostructure based broadband photodetector with detection from UV-C to NIR region. In addition, the PtS2-x/Ga2O3device shows a high responsivity of 38.7 AW-1and detectivity of 4.8 × 1013Jones under 1100 nm light illumination at 5 V bias. A fast response of 90 ms/86 ms illustrates the device's fast speed. An interface study between the PtS2-xand Ga2O3was conducted using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy (UPS) which confirmed type-I band alignment. Finally, based on their band alignment study, a carrier transport mechanism was proposed at the interface. This work offers a new opportunity to fabricate large-area high-performance 2D-3D heterostructures based photodetectors for future optoelectronics devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA