Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(5): 3820-31, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25562068

RESUMEN

Although the molecular modeling of self-assembling processes stands as a challenging research issue, there have been a number of breakthroughs in recent years. This report describes the use of large-scale molecular dynamics simulations with coarse grained models to study the spontaneous self-assembling of capped nanoparticles in chloroform suspension. A model system comprising 125 nanoparticles in chloroform evolved spontaneously from a regular array of independent nanoparticles to a single thread-like, ramified superstructure spanning the whole simulation box. The aggregation process proceeded by means of two complementary mechanisms, the first characterized by reactive collisions between monomers and oligomers, which were permanently trapped into the growing superstructure, and the second a slow structural reorganization of the nanoparticle packing. Altogether, these aggregation processes were over after ca. 0.6 µs and the system remained structurally and energetically stable until 1 µs. The thread-like structure closely resembles the TEM images of capped ZrO2, but a better comparison with experimental results was obtained by the deposition of the suspension over a graphene solid substrate, followed by the complete solvent evaporation. The agreement between the main structural features from this simulation and those from the TEM experiment was excellent and validated the model system. In order to shed further light on the origins of the stable aggregation of the nanoparticles, the Gibbs energy of aggregation was computed, along with its enthalpy and entropy contributions, both in chloroform and in a vacuum. The thermodynamic parameters arising from the modeling are consistent with larger nanoparticles in chloroform due to the solvent-swelled organic layer and the overall effect of the solvent was the partial destabilization of the aggregated state as compared to the vacuum system. The modeling strategy has been proved effective and reliable to describe the self-assembling of capped nanoparticles, but we must acknowledge the fact that larger model systems and longer timescales will be necessary in future investigations in order to assess structural and dynamical information approaching the behavior of macroscopic systems.


Asunto(s)
Simulación de Dinámica Molecular , Nanopartículas/química , Cloroformo/química , Grafito/química , Microscopía Electrónica de Transmisión , Propiedades de Superficie , Termodinámica , Circonio/química
2.
Chemistry ; 20(21): 6288-93, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24824333

RESUMEN

This work reports the analysis of the distribution of Gd atoms and the quantification of O vacancies applied to individual CeO2 and Gd-doped CeO2 nanocrystals by electron energy-loss spectroscopy. The concentration of O vacancies measured on the undoped system (6.3±2.6 %) matches the expected value given the typical Ce(3+) content previously reported for CeO2 nanoparticles. The doped nanoparticles have an uneven distribution of dopant atoms and an atypical amount of O vacant sites (37.7±4.1 %). The measured decrease of the O content induced by Gd doping cannot be explained solely by the charge balance including Ce(3+) and Gd(3+) ions.

3.
Dent Mater ; 40(3): 451-457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129193

RESUMEN

OBJECTIVES: This study evaluated the impact of different solvents and UV post-curing times on properties of 3D printing resins for provisional restorations. METHODS: The post-processing methods were tested using two solvents (isopropyl alcohol or absolute ethanol) and three UV times (5, 10, or 30 min). The resins tested were Resilab 3D Temp, Printax Temp, and Prizma Bioprov. Microhardness (kgf/mm2), fracture toughness (KIC, MPa√m), surface roughness (Ra, µm), gloss (gloss units), and degree of CC conversion (%DC) were measured (n = 8). All response variables were collected from the same specimen. The specimens were 3D printed using an SLA/LCD printer (150° angulation, 50 µm layer thickness). Light exposure times were adjusted for each material, and the post-processing methods were applied using an all-in-one machine immediately after printing. Data were analyzed using Three-Way ANOVA (α = 0.05). RESULTS: Microhardness was affected by UV post-cure time and 3D resin. Resilab showed higher microhardness with isopropyl alcohol and 30-min UV time, while Printax had higher microhardness with absolute ethanol. KIC was influenced by solvent type, UV time, and 3D resin, with varying effects on different resins. Roughness was affected by 3D resin and UV time, but no significant differences were seen for Resilab or Prizma. Gloss was influenced by 3D resin, and for Prizma, it was lower with specific solvent/UV time combinations. DC was influenced by 3D resin, with each resin behaving differently. SIGNIFICANCE: Tailoring the combination of 3D resin, solvent washing type, and UV post-curing time is important to achieve optimal mechanical and aesthetic outcomes for restorations.


Asunto(s)
Resinas Compuestas , Polímeros , Solventes , 2-Propanol , Etanol , Impresión Tridimensional , Ensayo de Materiales , Propiedades de Superficie
4.
Chem Commun (Camb) ; 48(62): 7687-9, 2012 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-22735236

RESUMEN

We merged the microwave synthesis approach with an extension of the nonhydrolytic sol-gel method to induce highly selective crystallization of MoS(2) layers over graphene sheets. This hybrid material showed superior electrocatalytic activity in hydrogen evolution reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA