Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008864

RESUMEN

Dietary fiber is considered a strong intestinal protector, but we do not know whether dietary fiber protects against the long-lasting mucosal damage caused by ionizing radiation. To evaluate whether a fiber-rich diet can ameliorate the long-lasting pathophysiological hallmarks of the irradiated mucosa, C57BL/6J mice on a fiber-rich bioprocessed oat bran diet or a fiber-free diet received 32 Gray in four fractions to the distal colorectum using a linear accelerator and continued on the diets for one, six or 18 weeks. We quantified degenerating crypts, crypt fission, cell proliferation, crypt survival, macrophage density and bacterial infiltration. Crypt loss through crypt degeneration only occurred in the irradiated mice. Initially, it was most frequent in the fiber-deprived group but declined to levels similar to the fiber-consuming group by 18 weeks. The fiber-consuming group had a fast response to irradiation, with crypt fission for growth or healing peaking already at one week post-irradiation, while crypt fission in the fiber-deprived group peaked at six weeks. A fiber-rich diet allowed for a more intense crypt cell proliferation, but the recovery of crypts was eventually lost by 18 weeks. Bacterial infiltration was a late phenomenon, evident in the fiber-deprived animals and intensified manyfold after irradiation. Bacterial infiltration also coincided with a specific pro-inflammatory serum cytokine profile. In contrast, mice on a fiber-rich diet were completely protected from irradiation-induced bacterial infiltration and exhibited a similar serum cytokine profile as sham-irradiated mice on a fiber-rich diet. Our findings provide ample evidence that dietary fiber consumption modifies the onset, timing and intensity of radiation-induced pathophysiological processes in the intestinal mucosa. However, we need more knowledge, not least from clinical studies, before this finding can be introduced to a new and refined clinical practice.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Colon , Fibras de la Dieta/farmacología , Mucosa Intestinal/efectos de los fármacos , Traumatismos por Radiación/tratamiento farmacológico , Animales , Colon/efectos de los fármacos , Colon/patología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Neuroscience ; 475: 137-147, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487821

RESUMEN

We sought to determine whether radiation to the colorectum had an impact on parameters of hippocampal neurogenesis and, if so, whether it could be modulated by a fiber-rich diet. Male C57BL/6J mice were fed a diet containing bioprocessed oat bran or a fiber-free diet, starting two weeks before colorectal irradiation with 4 fractions of 8 Gray or sham-irradiation. Diets were then continued for 1, 6 or 18 weeks, whereafter parameters of hippocampal neurogenesis were analyzed and correlated to serum cytokine levels. No statistically significant changes in neuronal markers or cell proliferation were found at one week post-irradiation. Six weeks post-irradiation there was a decreased cell proliferation in the subgranular zone that appeared slightly more pronounced in irradiated animals on a fiber-free diet and increased numbers of immature neurons per mm2 dentate gyrus in the irradiated mice, with a statistically significant increase in mice on a fiber-rich diet. Microglial abundancy was similar between all groups. 18 weeks post-irradiation, a fiber-free diet had reduced the number of immature neurons, whereas irradiation resulted in an increase. Despite this, the population of mature neurons was stable. Analysis of serum cytokines revealed a negative correlation between MIP1-α and the number of immature neurons one week after irradiation, regardless of diet. Our findings show that pelvic radiotherapy has the potential to cause a long-lasting impact on hippocampal neurogenesis, and dietary interventions may modulate this impact. More in-depth studies on the relationship between irradiation-induced intestinal injury and brain health are warranted.


Asunto(s)
Hipocampo , Neurogénesis , Animales , Giro Dentado , Fibras de la Dieta , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas
3.
Sci Rep ; 9(1): 9588, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270437

RESUMEN

Better survival rates among pediatric brain tumor patients have resulted in an increased awareness of late side effects that commonly appear following cancer treatment. Radiation-induced changes in hippocampus and white matter are well described, but do not explain the full range of neurological late effects in childhood cancer survivors. The aim of this study was to investigate thalamus following cranial irradiation (CIR) to the developing brain. At postnatal day 14, male mice pups received a single dose of 8 Gy CIR. Cellular effects in thalamus were assessed using immunohistochemistry 4 months after CIR. Interestingly, the density of neurons decreased with 35% (p = 0.0431) and the density of astrocytes increased with 44% (p = 0.011). To investigate thalamic astrocytes, S100ß+ cells were isolated by fluorescence-activated cell sorting and genetically profiled using next-generation sequencing. The phenotypical characterization indicated a disrupted function, such as downregulated microtubules' function, higher metabolic activity, immature phenotype and degraded ECM. The current study provides novel insight into that thalamus, just like hippocampus and white matter, is severely affected by CIR. This knowledge is of importance to understand the late effects seen in pediatric brain tumor survivors and can be used to give them the best suitable care.


Asunto(s)
Irradiación Craneana , Radiación Ionizante , Tálamo/efectos de la radiación , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Tálamo/metabolismo , Tálamo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA