Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Virol ; 96(4): e0203921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878926

RESUMEN

The single-stranded DNA genome of adeno-associated viruses (AAV) undergoes second-strand synthesis and transcription in the host cell nucleus. While wild-type AAV genomes are naturally silenced upon integration into the host genome, recombinant AAV (rAAV) genomes typically provide robust expression of transgenes persisting as extrachromosomal DNA or episomes. Episomal DNA associating with host histones is subject to epigenetic modifications, although the mechanisms underlying such are not well understood. Here, we provide evidence that the double-stranded DNA binding protein NP220, in association with the human silencing hub (HUSH) complex, mediates transcriptional silencing of single-stranded as well as self-complementary rAAV genomes. In cells lacking NP220 or other components of the HUSH complex, AAV genome transcript levels are increased and correlate with a marked reduction in repressive H3K9 histone methylation marks. We also provide evidence that the AAV capsid (serotype) can profoundly influence NP220-mediated silencing of packaged genomes, indicating potential role(s) for capsid-genome or capsid-host factor interactions in regulating epigenetic silencing of rAAV genomes. IMPORTANCE Recombinant AAV vectors can enable long-term gene expression in a wide variety of tissues. However, transgene silencing has been reported in some human gene therapy clinical trials. Here, we demonstrate the HUSH complex can suppress transcript formation from rAAV vector genomes by epigenetic modification of associated host histones. Further, the AAV capsid appears to play an important role in this pathway. We postulate that modulation of epigenetic pathways could help improve rAAV expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dependovirus/genética , Silenciador del Gen , Genoma Viral/genética , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Cápside/metabolismo , Proteínas de Unión al ADN/genética , Dependovirus/metabolismo , Epigénesis Genética , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/genética , Serogrupo , Factores de Transcripción/genética , Transcripción Genética , Transgenes/genética
2.
J Virol ; 95(19): e0058721, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34232726

RESUMEN

Adeno-associated viruses utilize different glycans and the AAV receptor (AAVR) for cellular attachment and entry. Directed evolution has yielded new AAV variants; however, structure-function correlates underlying their improved transduction are generally overlooked. Here, we report that infectious cycling of structurally diverse AAV surface loop libraries yields functionally distinct variants. Newly evolved variants show enhanced cellular binding, uptake, and transduction, but through distinct mechanisms. Using glycan-based and genome-wide CRISPR knockout screens, we discover that one AAV variant acquires the ability to recognize sulfated glycosaminoglycans, while another displays receptor switching from AAVR to integrin ß1 (ITGB1). A previously evolved variant, AAVhum.8, preferentially utilizes the ITGB1 receptor over AAVR. Visualization of the AAVhum.8 capsid by cryoelectron microscopy at 2.49-Å resolution localizes the newly acquired integrin recognition motif adjacent to the AAVR footprint. These observations underscore the new finding that distinct AAV surface epitopes can be evolved to exploit different cellular receptors for enhanced transduction. IMPORTANCE Understanding how viruses interact with host cells through cell surface receptors is central to discovery and development of antiviral therapeutics, vaccines, and gene transfer vectors. Here, we demonstrate that distinct epitopes on the surface of adeno-associated viruses can be evolved by infectious cycling to recognize different cell surface carbohydrates and glycoprotein receptors and solve the three-dimensional structure of one such newly evolved AAV capsid, which provides a roadmap for designing viruses with improved attributes for gene therapy applications.


Asunto(s)
Dependovirus/genética , Dependovirus/metabolismo , Evolución Molecular Dirigida , Receptores Virales/metabolismo , Secuencias de Aminoácidos , Sistemas CRISPR-Cas , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Línea Celular , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Dependovirus/química , Dependovirus/ultraestructura , Variación Genética , Glicosaminoglicanos/metabolismo , Humanos , Integrina beta1/química , Integrina beta1/metabolismo , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/química , Internalización del Virus
3.
J Virol ; 95(11): e0005821, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692213

RESUMEN

Iminosugar compounds are monosaccharide mimetics with broad but generally weak antiviral activities related to inhibition of enzymes involved in glycobiology. Miglustat (N-butyl-1-deoxynojirimycin), which is approved for the treatment of lipid storage diseases in humans, and UV-4 [N-(9-methoxynonyl)-1-deoxynojirimycin] inhibit the replication of hepatitis A virus (HAV) in cell culture (50% inhibitory concentrations [IC50s] of 32.13 µM and 8.05 µM, respectively) by blocking the synthesis of gangliosides essential for HAV cell entry. We used a murine model of hepatitis A and targeted mass spectrometry to assess the capacity of these compounds to deplete hepatic gangliosides and modify the course of HAV infection in vivo. Miglustat, given by gavage to Ifnar1-/- mice (4,800 mg/kg of body weight/day) depleted hepatic gangliosides by 69 to 75% but caused substantial gastrointestinal toxicity and failed to prevent viral infection. UV-4, similarly administered in high doses (400 mg/kg/day), was well tolerated but depleted hepatic gangliosides by only 20% after 14 days. UV-4 depletion of gangliosides varied by class. Several GM2 species were paradoxically increased, likely due to inhibition of ß-glucosidases that degrade gangliosides. Both compounds enhanced, rather than reduced, virus replication. Nonetheless, both iminosugars had surprising anti-inflammatory effects, blocking the accumulation of inflammatory cells within the liver. UV-4 treatment also resulted in a decrease in serum alanine aminotransferase (ALT) elevations associated with acute hepatitis A. These anti-inflammatory effects may result from iminosugar inhibition of cellular α-glucosidases, leading to impaired maturation of glycan moieties of chemokine and cytokine receptors, and point to the potential importance of paracrine signaling in the pathogenesis of acute hepatitis A. IMPORTANCE Hepatitis A virus (HAV) is a common cause of viral hepatitis. Iminosugar compounds block its replication in cultured cells by inhibiting the synthesis of gangliosides required for HAV cell entry but have not been tested for their ability to prevent or treat hepatitis A in vivo. We show that high doses of the iminosugars miglustat and UV-4 fail to deplete gangliosides sufficiently to block HAV infection in mice lacking a key interferon receptor. These compounds nonetheless have striking anti-inflammatory effects on the HAV-infected liver, reducing the severity of hepatitis despite enhancing chemokine and cytokine expression resulting from hepatocyte-intrinsic antiviral responses. We propose that iminosugar inhibition of cellular α-glucosidases impairs the maturation of glycan moieties of chemokine and cytokine receptors required for effective signaling. These data highlight the potential importance of paracrine signaling pathways in the inflammatory response to HAV and add to our understanding of HAV pathogenesis in mice.


Asunto(s)
Gangliósidos , Inhibidores de Glicósido Hidrolasas , Hepatitis A , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Animales , Antiinflamatorios/farmacología , Antivirales/farmacología , Gangliósidos/metabolismo , Hepatitis A/tratamiento farmacológico , Virus de la Hepatitis A , Inflamación/tratamiento farmacológico , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptores de Interferón , Internalización del Virus , alfa-Glucosidasas/farmacología
4.
Echocardiography ; 34(10): 1519-1523, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28980409

RESUMEN

A 42-year-old woman presented to the emergency department with chest pain. Acute coronary syndrome was ruled out. During dobutamine stress echocardiography (DSE), she developed chest pain and inferior ST elevation. Emergent coronary angiography revealed no culprit lesions but did show an anomalous right coronary artery (RCA). Coronary CT angiography (CCTA) confirmed an anomalous RCA arising from the left coronary cusp with a slit-like ostium and interarterial course (ARCA-LCC-IA). Herein, we review the extant literature on ARCA-LCC-IA, its clinical presentation, the vital role of CTA and MRI in its diagnosis, as well as challenges and controversies surrounding management.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Anomalías de los Vasos Coronarios/diagnóstico por imagen , Prueba de Esfuerzo/métodos , Adulto , Vasos Coronarios/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Infarto del Miocardio con Elevación del ST
5.
J Virol ; 88(6): 3103-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371060

RESUMEN

UNLABELLED: In a genome-wide small interfering RNA (siRNA) screen, we recently identified the interferon (IFN)-inducible protein 35 (IFI35; also known as IFP35) as a factor required for vesicular stomatitis virus (VSV) infection. Studies reported here were conducted to further understand the role and requirement of IFI35 in VSV infection. Consistent with the siRNA screening data, we found that depletion of IFI35 led to reduced VSV replication at the level of viral gene expression. Although no direct interaction of IFI35 with the viral replication machinery was observed, we found that IFI35 negatively regulated the host innate immune response and rescued poly(I·C)-induced inhibition of VSV replication. Promoter-driven reporter gene assays demonstrated that IFI35 overexpression suppressed the activation of IFN-ß and ISG56 promoters, whereas its depletion had the opposite effect. Further investigation revealed that IFI35 specifically interacted with retinoic acid-inducible gene I (RIG-I) and negatively regulated its activation through mechanisms that included (i) suppression of dephosphorylation (activation) of RIG-I and (ii) proteasome-mediated degradation of RIG-I via K48-linked ubiquitination. Overall, the results presented here suggest a novel role for IFI35 in negative regulation of RIG-I-mediated antiviral signaling, which will have implications for diseases associated with excessive immune signaling. IMPORTANCE: Mammalian cells employ a variety of mechanisms, including production of interferons (IFNs), to counteract invading pathogens. In this study, we identified a novel role for a cellular protein, IFN-inducible protein 35 (IFP35/IFI35), in negatively regulating the host IFN response during vesicular stomatitis virus (VSV) infection. Specifically, we found that IFI35 inhibited activation of the RNA sensor, the retinoic acid-inducible gene I (RIG-I), leading to inhibition of IFN production and thus resulting in better replication of VSV. The identification of a cellular factor that attenuates the IFN response will have implications toward understanding inflammatory diseases in humans that have been found to be associated with defects in the regulation of host IFN production, such as systemic lupus erythematosus and psoriasis.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Unión Proteica , Receptores Inmunológicos , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/genética
7.
J Virol ; 87(18): 10059-69, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23843646

RESUMEN

The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.


Asunto(s)
Apoptosis , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Interacciones Huésped-Patógeno , Vesiculovirus/fisiología , Replicación Viral , Animales , Línea Celular , Supervivencia Celular , Regulación de la Expresión Génica , Humanos , Transcripción Genética
8.
J Virol ; 87(1): 372-83, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23077311

RESUMEN

Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.


Asunto(s)
Gránulos Citoplasmáticos/química , Proteínas de Unión a Poli(A)/análisis , Proteínas de Unión al ARN/análisis , Vesiculovirus/patogenicidad , Línea Celular , Silenciador del Gen , Humanos , Proteínas de Unión a Poli(A)/genética , ARN Viral/análisis , Proteínas de Unión al ARN/genética , Antígeno Intracelular 1 de las Células T , Vesiculovirus/crecimiento & desarrollo , Proteínas Virales/análisis
9.
Proc Natl Acad Sci U S A ; 108(47): 19036-41, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22065774

RESUMEN

Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.


Asunto(s)
Factores Celulares Derivados del Huésped/genética , Vías Secretoras/genética , Virus de la Estomatitis Vesicular Indiana/fisiología , Integración Viral/genética , Animales , Línea Celular , Perros , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/fisiología , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus de la Estomatitis Vesicular Indiana/genética
10.
Comput Struct Biotechnol J ; 23: 1919-1928, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38711760

RESUMEN

The decrease in sequencing expenses has facilitated the creation of reference genomes and proteomes for an expanding array of organisms. Nevertheless, no established repository that details organism-specific genomic and proteomic sequences of specific lengths, referred to as kmers, exists to our knowledge. In this article, we present kmerDB, a database accessible through an interactive web interface that provides kmer-based information from genomic and proteomic sequences in a systematic way. kmerDB currently contains 202,340,859,107 base pairs and 19,304,903,356 amino acids, spanning 54,039 and 21,865 reference genomes and proteomes, respectively, as well as 6,905,362 and 149,305,183 genomic and proteomic species-specific sequences, termed quasi-primes. Additionally, we provide access to 5,186,757 nucleic and 214,904,089 peptide sequences absent from every genome and proteome, termed primes. kmerDB features a user-friendly interface offering various search options and filters for easy parsing and searching. The service is available at: www.kmerdb.com.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA