Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(4): 456-463, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192417

RESUMEN

Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Interacciones Huésped-Patógeno/inmunología , Epítopos Inmunodominantes/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antecedentes Genéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Interacciones Huésped-Patógeno/genética , Inmunización , Epítopos Inmunodominantes/química , Memoria Inmunológica , Virus de la Influenza A/inmunología , Ganglios Linfáticos/inmunología , Ratones , Modelos Moleculares , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Conformación Proteica , Virosis/genética , Virosis/virología
2.
J Virol ; 97(3): e0147222, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815771

RESUMEN

Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Nasofaringe , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Femenino , Humanos , Lactante , Masculino , Genotipo , Microbiota/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Factores Sexuales , Nasofaringe/microbiología , Interacciones Microbiota-Huesped/fisiología
3.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656015

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
4.
J Infect Dis ; 227(10): 1194-1202, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375000

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is associated with acute respiratory infection. We sought to identify RSV variants associated with prolonged infection. METHODS: Among healthy term infants we identified those with prolonged RSV infection and conducted (1) a human genome-wide association study (GWAS) to test the dependence of infection risk on host genotype, (2) a viral GWAS for association with prolonged RSV infection using RSV whole-genome sequencing, (3) an analysis of all viral public sequences, (4) an assessment of immunological responses, and (5) a summary of all major functional data. Analyses were adjusted for viral/human population structure and host factors associated with infection risk. RESULTS: We identified p.E123K/D and p.P218T/S/L in G protein that were associated with prolonged infection (Padj = .01). We found no evidence of host genetic risk for infection. The RSV variant positions approximate sequences that could bind a putative viral receptor, heparan sulfate. CONCLUSIONS: Using analysis of both viral and host genetics we identified a novel RSV variant associated with prolonged infection in otherwise healthy infants and no evidence supporting host genetic susceptibility to infection. As the capacity of RSV for chronicity and its viral reservoir are not defined, these findings are important for understanding the impact of RSV on chronic disease and endemicity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Cohorte de Nacimiento , Estudio de Asociación del Genoma Completo , Virus Sincitial Respiratorio Humano/genética , Predisposición Genética a la Enfermedad
5.
J Allergy Clin Immunol ; 150(3): 612-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35283139

RESUMEN

BACKGROUND: The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE: We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS: We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS: Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS: Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.


Asunto(s)
Asma , Microbiota , Infecciones del Sistema Respiratorio , Rinitis Alérgica , Asma/epidemiología , Asma/etiología , Lactancia Materna , Niño , Femenino , Humanos , Inmunidad , Lactante , Estudios Prospectivos , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Rinitis Alérgica/complicaciones
6.
J Allergy Clin Immunol ; 149(3): 966-976, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34534566

RESUMEN

BACKGROUND: The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES: Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS: We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS: We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (ß =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (ß = 0.89 [95% CI = 0.37-1.40]). The Jaccard ß-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS: The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.


Asunto(s)
Microbiota , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Lactante , Ruidos Respiratorios/etiología , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones
7.
Dig Dis ; 40(3): 345-354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34315165

RESUMEN

BACKGROUND: Esophageal conditions result in significant morbidity and mortality worldwide. There is growing enthusiasm for discerning the role of microbiome in esophageal diseases. Conceivably, the focus has been on examining the role of local microbiome in esophageal diseases although this is somewhat limited by the invasive approach required to sample the esophageal tissue. Given the ease of sampling the oral cavity combined with the advances in genomic techniques, there is immense interest in discovering the role of the oral microbiome in esophageal conditions. SUMMARY: In this review, we aim to discuss the current evidence highlighting the association between the oral microbiome and esophageal diseases. In particular, we have focused on summarizing the alterations in oral microbiome associated with malignant, premalignant, and benign esophageal cancers, inflammatory and infectious conditions, and esophageal dysmotility diseases. Identifying alterations in the oral microbiome is a key to advancing our understanding of the etiopathogenesis and progression of esophageal diseases, promoting novel diagnostics, and laying the foundation for personalized treatment approaches. KEY MESSAGES: Further studies are needed to unravel the mechanisms by which the oral microbiome influences the development and progression of esophageal diseases, as well as to investigate whether alterations in the oral microbiome can impact the natural history of various esophageal diseases.


Asunto(s)
Esófago de Barrett , Enfermedades del Esófago , Neoplasias Esofágicas , Microbiota , Lesiones Precancerosas , Esófago de Barrett/patología , Enfermedades del Esófago/complicaciones , Neoplasias Esofágicas/patología , Humanos , Lesiones Precancerosas/patología
8.
J Allergy Clin Immunol ; 147(4): 1226-1233.e2, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577896

RESUMEN

BACKGROUND: Little is known about the relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the respiratory virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, and the upper respiratory tract (URT) microbiome. OBJECTIVE: We sought to compare the URT microbiome between SARS-CoV-2-infected and -uninfected adults and to examine the association of SARS-CoV-2 viral load with the URT microbiome during COVID-19. METHODS: We characterized the URT microbiome using 16S ribosomal RNA sequencing in 59 adults (38 with confirmed, symptomatic, mild to moderate COVID-19 and 21 asymptomatic, uninfected controls). In those with COVID-19, we measured SARS-CoV-2 viral load using quantitative reverse transcription PCR. We then examined the association of SARS-CoV-2 infection status and its viral load with the ⍺-diversity, ß-diversity, and abundance of bacterial taxa of the URT microbiome. Our main models were all adjusted for age and sex. RESULTS: The observed species index was significantly higher in SARS-CoV-2-infected than in -uninfected adults (ß linear regression coefficient = 7.53; 95% CI, 0.17-14.89; P = .045). In differential abundance testing, 9 amplicon sequence variants were significantly different in both of our comparisons, with Peptoniphilus lacrimalis, Campylobacter hominis, Prevotella 9 copri, and an Anaerococcus unclassified amplicon sequence variant being more abundant in those with SARS-CoV-2 infection and in those with high viral load during COVID-19, whereas Corynebacterium unclassified, Staphylococcus haemolyticus, Prevotella disiens, and 2 Corynebacterium_1 unclassified amplicon sequence variants were more abundant in those without SARS-CoV-2 infection and in those with low viral load during COVID-19. CONCLUSIONS: Our findings suggest complex associations between SARS-CoV-2 and the URT microbiome in adults. Future studies are needed to examine how these viral-bacterial interactions can impact the clinical progression, severity, and recovery of COVID-19.


Asunto(s)
COVID-19/microbiología , COVID-19/virología , Microbiota , Sistema Respiratorio/microbiología , SARS-CoV-2 , Carga Viral , Adulto , Biodiversidad , Estudios de Casos y Controles , Femenino , Interacciones Microbiota-Huesped , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , Pandemias , ARN Ribosómico 16S/genética , Especificidad de la Especie
9.
Am J Transplant ; 21(7): 2333-2340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749996

RESUMEN

With the introduction of high-throughput sequencing methods, our understanding of the human lower respiratory tract's inhabitants has expanded significantly in recent years. What is now termed the "lung microbiome" has been described for healthy patients, as well as people with chronic lung diseases and lung transplants. The lung microbiome of lung transplant recipients (LTRs) has proven to be unique compared with nontransplant patients, with characteristic findings associated with disease states, such as pneumonia, acute rejection, and graft failure. In this review, we summarize the current understanding of the lung microbiome in LTRs, not only focusing on bacteria but also highlighting key findings of the viral and the fungal community. Based on our knowledge of the lung microbiome in LTRs, we propose multiple opportunities for clinical use of the microbiome to improve outcomes in this population.


Asunto(s)
Enfermedades Pulmonares , Trasplante de Pulmón , Microbiota , Rechazo de Injerto/etiología , Humanos , Pulmón , Enfermedades Pulmonares/cirugía , Receptores de Trasplantes
10.
Nature ; 526(7571): 122-5, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416728

RESUMEN

Influenza A viruses pose a major public health threat by causing seasonal epidemics and sporadic pandemics. Their epidemiological success relies on airborne transmission from person to person; however, the viral properties governing airborne transmission of influenza A viruses are complex. Influenza A virus infection is mediated via binding of the viral haemagglutinin (HA) to terminally attached α2,3 or α2,6 sialic acids on cell surface glycoproteins. Human influenza A viruses preferentially bind α2,6-linked sialic acids whereas avian influenza A viruses bind α2,3-linked sialic acids on complex glycans on airway epithelial cells. Historically, influenza A viruses with preferential association with α2,3-linked sialic acids have not been transmitted efficiently by the airborne route in ferrets. Here we observe efficient airborne transmission of a 2009 pandemic H1N1 (H1N1pdm) virus (A/California/07/2009) engineered to preferentially bind α2,3-linked sialic acids. Airborne transmission was associated with rapid selection of virus with a change at a single HA site that conferred binding to long-chain α2,6-linked sialic acids, without loss of α2,3-linked sialic acid binding. The transmissible virus emerged in experimentally infected ferrets within 24 hours after infection and was remarkably enriched in the soft palate, where long-chain α2,6-linked sialic acids predominate on the nasopharyngeal surface. Notably, presence of long-chain α2,6-linked sialic acids is conserved in ferret, pig and human soft palate. Using a loss-of-function approach with this one virus, we demonstrate that the ferret soft palate, a tissue not normally sampled in animal models of influenza, rapidly selects for transmissible influenza A viruses with human receptor (α2,6-linked sialic acids) preference.


Asunto(s)
Adaptación Fisiológica , Subtipo H1N1 del Virus de la Influenza A/fisiología , Paladar Blando/metabolismo , Paladar Blando/virología , Receptores Virales/metabolismo , Selección Genética , Adaptación Fisiológica/genética , Animales , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Masculino , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Paladar Blando/química , Sistema Respiratorio/citología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Selección Genética/genética , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Porcinos/virología
11.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30333170

RESUMEN

Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Rotavirus/clasificación , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Preescolar , Técnicas de Genotipaje , Humanos , Lactante , Filogenia , Vigilancia de la Población , Rotavirus/genética , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Análisis de Secuencia de ARN , Estados Unidos
12.
J Allergy Clin Immunol ; 143(3): 990-1002.e6, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30468775

RESUMEN

BACKGROUND: Potential effects of aging on chronic rhinosinusitis (CRS) pathophysiology have not been well defined but might have important ramifications given a rapidly aging US and world population. OBJECTIVE: The goal of the current study was to determine whether advanced age is associated with specific inflammatory CRS endotypes or immune signatures. METHODS: Levels of 17 mucus cytokines and inflammatory mediators were measured in 147 patients with CRS. Hierarchical cluster analysis was used to identify and characterize inflammatory CRS endotypes, as well as to determine whether age was associated with specific immune signatures. RESULTS: A CRS endotype with a proinflammatory neutrophilic immune signature was enriched in older patients. In the overall cohort patients 60 years and older had increased mucus levels of IL-1ß, IL-6, IL-8, and TNF-α when compared with their younger counterparts. Increases in levels of proinflammatory cytokines were associated with both tissue neutrophilia and symptomatic bacterial infection/colonization in aged patients. CONCLUSIONS: Aged patients with CRS have a unique inflammatory signature that corresponds to a neutrophilic proinflammatory response. Neutrophil-driven inflammation in aged patients with CRS might be less likely to respond to corticosteroids and might be closely linked to chronic microbial infection or colonization.


Asunto(s)
Infecciones Bacterianas/inmunología , Neutrófilos/inmunología , Rinitis/inmunología , Sinusitis/inmunología , Adulto , Anciano , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Enfermedad Crónica , Análisis por Conglomerados , Citocinas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Moco/inmunología , Pólipos Nasales/inmunología , Senos Paranasales/inmunología , Senos Paranasales/microbiología , Rinitis/microbiología , Sinusitis/microbiología
13.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29618651

RESUMEN

Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.


Asunto(s)
Virus de la Encefalitis Equina del Este/clasificación , Encefalomielitis Equina/transmisión , Secuenciación Completa del Genoma/métodos , Animales , Virus de la Encefalitis Equina del Este/genética , Encefalomielitis Equina/epidemiología , Florida/epidemiología , Variación Genética , Tamaño del Genoma , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Massachusetts/epidemiología , New York/epidemiología , Filogenia , Filogeografía
14.
PLoS Pathog ; 13(2): e1006203, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28170438

RESUMEN

We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.


Asunto(s)
Gripe Humana/virología , Modelos Genéticos , Orthomyxoviridae/genética , Humanos , Selección Genética
15.
J Biomed Sci ; 26(1): 49, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31266491

RESUMEN

BACKGROUND: Human enteroviruses contain over 100 serotypes. We have routinely conducted enterovirus surveillance in northern Taiwan; but about 10% of isolates could not be serotyped using traditional assays. Next-generation sequencing (NGS) is a powerful tool for genome sequencing. METHODS: In this study, we established an NGS platform to conduct genome sequencing for the serologically untypable enterovirus isolates. RESULTS: Among 130 serologically untypable isolates, 121 (93%) of them were classified into 29 serotypes using CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer)-based RT-PCR to amplify VP1 genes (VP1-CODEHOP). We further selected 52 samples for NGS and identified 59 genome sequences from 51 samples, including 8 samples containing two virus genomes. We also detected 23 genome variants (nucleotide identity < 90% compared with genome sequences in the public domain) which were potential genetic recombination, including 9 inter-serotype recombinants and 14 strains with unknown sources of recombination. CONCLUSIONS: We successfully integrated VP1-CODEHOP and NGS techniques to conduct genomic analysis of serologically untypable enteroviruses.


Asunto(s)
Enterovirus/genética , Genoma Viral , Serogrupo , Infecciones por Enterovirus , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Taiwán
16.
Am J Respir Crit Care Med ; 198(8): 1064-1073, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29733679

RESUMEN

RATIONALE: Recurrent wheeze and asthma are thought to result from alterations in early life immune development following respiratory syncytial virus (RSV) infection. However, prior studies of the nasal immune response to infection have assessed only individual cytokines, which does not capture the whole spectrum of response to infection. OBJECTIVES: To identify nasal immune phenotypes in response to RSV infection and their association with recurrent wheeze. METHODS: A birth cohort of term healthy infants born June to December were recruited and followed to capture the first infant RSV infection. Nasal wash samples were collected during acute respiratory infection, viruses were identified by RT-PCR, and immune-response analytes were assayed using a multianalyte bead-based panel. Immune-response clusters were identified using machine learning, and association with recurrent wheeze at age 1 and 2 years was assessed using logistic regression. MEASUREMENTS AND MAIN RESULTS: We identified two novel and distinct immune-response clusters to RSV and human rhinovirus. In RSV-infected infants, a nasal immune-response cluster characterized by lower non-IFN antiviral immune-response mediators, and higher type-2 and type-17 cytokines was significantly associated with first and second year recurrent wheeze. In comparison, we did not observe this in infants with human rhinovirus acute respiratory infection. Based on network analysis, type-2 and type-17 cytokines were central to the immune response to RSV, whereas growth factors and chemokines were central to the immune response to human rhinovirus. CONCLUSIONS: Distinct immune-response clusters during infant RSV infection and their association with risk of recurrent wheeze provide insights into the risk factors for and mechanisms of asthma development.


Asunto(s)
Mucosa Nasal/inmunología , Ruidos Respiratorios/etiología , Infecciones por Virus Sincitial Respiratorio/inmunología , Asma/etiología , Asma/virología , Preescolar , Femenino , Humanos , Inmunidad , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Mucosa Nasal/virología , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Recurrencia , Ruidos Respiratorios/inmunología , Virus Sincitial Respiratorio Humano/inmunología
17.
J Allergy Clin Immunol ; 142(5): 1447-1456.e9, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29330010

RESUMEN

BACKGROUND: Early life acute respiratory infection (ARI) with respiratory syncytial virus (RSV) has been strongly associated with the development of childhood wheezing illnesses, but the pathways underlying this association are poorly understood. OBJECTIVE: To examine the role of the nasopharyngeal microbiome in the development of childhood wheezing illnesses following RSV ARI in infancy. METHODS: We conducted a nested cohort study of 118 previously healthy, term infants with confirmed RSV ARI by RT-PCR. We used next-generation sequencing of the V4 region of the 16S ribosomal RNA gene to characterize the nasopharyngeal microbiome during RSV ARI. Our main outcome of interest was 2-year subsequent wheeze. RESULTS: Of the 118 infants, 113 (95.8%) had 2-year outcome data. Of these, 46 (40.7%) had parental report of subsequent wheeze. There was no association between the overall taxonomic composition, diversity, and richness of the nasopharyngeal microbiome during RSV ARI with the development of subsequent wheeze. However, the nasopharyngeal detection and abundance of Lactobacillus was consistently higher in infants who did not develop this outcome. Lactobacillus also ranked first among the different genera in a model distinguishing infants with and without subsequent wheeze. CONCLUSIONS: The nasopharyngeal detection and increased abundance of Lactobacillus during RSV ARI in infancy are associated with a reduced risk of childhood wheezing illnesses at age 2 years.


Asunto(s)
Lactobacillus/aislamiento & purificación , Nasofaringe/microbiología , Ruidos Respiratorios , Infecciones por Virus Sincitial Respiratorio/microbiología , Enfermedad Aguda , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Microbiota , ARN Ribosómico 16S/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/inmunología , Riesgo
18.
Clin Infect Dis ; 67(3): 327-333, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29471464

RESUMEN

Background: Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine's elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012-2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods: We investigated the basis of low VE in 2012-2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results: We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions: In contrast to analyses based on ferret studies, low H3N2 VE in 2012-2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Adaptación Fisiológica , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Virales/inmunología , Estudios de Cohortes , Reacciones Cruzadas , Huevos/virología , Hurones , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Mutación , Filogenia , Estaciones del Año
19.
Emerg Infect Dis ; 23(4): 654-657, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28322698

RESUMEN

Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.


Asunto(s)
Brotes de Enfermedades/veterinaria , Patos/virología , Gripe Aviar/virología , Virus Reordenados/genética , Animales , Animales Salvajes , Monitoreo Epidemiológico , Gripe Aviar/epidemiología
20.
J Gen Virol ; 98(11): 2663-2675, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058649

RESUMEN

Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.


Asunto(s)
Evolución Molecular , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , Canadá/epidemiología , Virus de la Influenza A/genética , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Porcinos , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA