RESUMEN
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of â¼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Asunto(s)
Corteza Auditiva/fisiología , Síndrome de Williams/fisiopatología , Animales , Corteza Auditiva/citología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/citología , Interneuronas/fisiología , Ratones , Fenotipo , Transactivadores/genética , Síndrome de Williams/genéticaRESUMEN
Lateral inhibition at the first synapse in the retina is important for visual perception, enhancing image contrast, color discrimination, and light adaptation. Despite decades of research, the feedback signal from horizontal cells to photoreceptors that generates lateral inhibition remains uncertain. GABA, protons, or an ephaptic mechanism have all been suggested as the primary mediator of feedback. However, the complexity of the reciprocal cone to horizontal cell synapse has left the identity of the feedback signal an unsolved mystery.
Asunto(s)
Lateralidad Funcional , Modelos Neurológicos , Inhibición Neural , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Canales de Calcio Tipo N/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/metabolismo , Receptores de GABA/metabolismo , Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Horizontales de la Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In ß2m(-/-)TAP(-/-)mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of ß2m(-/-)TAP(-/-)mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain.
Asunto(s)
Hipocampo/fisiología , Antígenos de Histocompatibilidad Clase I/fisiología , Depresión Sináptica a Largo Plazo , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Femenino , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Noqueados , Microglobulina beta-2/genéticaRESUMEN
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in immunity and have recently been implicated in long-term plasticity of excitatory synaptic transmission. However, the mechanisms by which MHCI influences synaptic plasticity remain unknown. Here we show that endogenous MHCI regulates synaptic responses mediated by NMDA-type glutamate receptors (NMDARs) in the mammalian central nervous system (CNS). The AMPA/NMDA ratio is decreased at MHCI-deficient hippocampal synapses, reflecting an increase in NMDAR-mediated currents. This enhanced NMDAR response is not associated with changes in the levels, subunit composition, or gross subcellular distribution of NMDARs. Increased NMDAR-mediated currents in MHCI-deficient neurons are associated with characteristic changes in AMPA receptor trafficking in response to NMDAR activation. Thus, endogenous MHCI tonically inhibits NMDAR function and controls downstream NMDAR-induced AMPA receptor trafficking during the expression of plasticity.
Asunto(s)
Hipocampo/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Ratones Noqueados , Transporte de Proteínas/fisiología , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genéticaRESUMEN
The excitatory synapse between hippocampal CA3 and CA1 pyramidal neurons exhibits long-term potentiation (LTP), a positive feedback process implicated in learning and memory in which postsynaptic depolarization strengthens synapses, promoting further depolarization. Without mechanisms for interrupting positive feedback, excitatory synapses could strengthen inexorably, corrupting memory storage. Here, we reveal a hidden form of inhibitory synaptic plasticity that prevents accumulation of excitatory LTP. We developed a knockin mouse that allows optical control of endogenous α5-subunit-containing γ-aminobutyric acid (GABA)A receptors (α5-GABARs). Induction of excitatory LTP relocates α5-GABARs, which are ordinarily extrasynaptic, to inhibitory synapses, quashing further NMDA receptor activation necessary for inducing more excitatory LTP. Blockade of α5-GABARs accelerates reversal learning, a behavioral test for cognitive flexibility dependent on repeated LTP. Hence, inhibitory synaptic plasticity occurs in parallel with excitatory synaptic plasticity, with the ensuing interruption of the positive feedback cycle of LTP serving as a possible critical early step in preserving memory.
Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de GABA-A/genética , Aprendizaje Inverso/fisiología , Sinapsis/genéticaRESUMEN
In the primate retina the small bistratified, "blue-yellow" color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S)-wavelength sensitive and combined long (L)- and middle (M)-wavelength sensitive cone photoreceptors, respectively. However, the synaptic pathways that create S versus LM cone-opponent receptive field structure remain controversial. Here, we show in the macaque monkey retina in vitro that at photopic light levels, when an identified rod input is excluded, the small bistratified cell displays a spatially coextensive receptive field in which the S-ON-input is in spatial, temporal, and chromatic balance with the LM-OFF-input. ON pathway block with l-AP-4, the mGluR6 receptor agonist, abolished the S-ON response but spared the LM-OFF response. The isolated LM component showed a center-surround receptive field structure consistent with an input from OFF-center, ON-surround "diffuse" cone bipolar cells. Increasing retinal buffering capacity with HEPES attenuated the LM-ON surround component, consistent with a non-GABAergic outer retina feedback mechanism for the bipolar surround. The GABAa/c receptor antagonist picrotoxin and the glycine receptor antagonist strychnine did not affect chromatic balance or the basic coextensive receptive field structure, suggesting that the LM-OFF field is not generated by an inner retinal inhibitory pathway. We conclude that the opponent S-ON and LM-OFF responses originate from the excitatory receptive field centers of S-ON and LM-OFF cone bipolar cells, and that the LM-OFF- and ON-surrounds of these parallel bipolar inputs largely cancel, explaining the small, spatially coextensive but spectrally antagonistic receptive field structure of the blue-ON ganglion cell.
Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Retina/citología , Células Ganglionares de la Retina/fisiología , Campos Visuales/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Fenómenos Biofísicos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Macaca , Modelos Neurológicos , Estimulación Luminosa/métodos , Picrotoxina/farmacología , Propionatos/farmacología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/clasificación , Células Ganglionares de la Retina/efectos de los fármacos , Estricnina/farmacología , Vías Visuales/efectos de los fármacosRESUMEN
Microglial activation can lead to microglial apoptosis, which may serve to remove highly reactive and possibly neurotoxic microglia. However the loss of microglia may have consequences for future recovery, protection and repair. P53, a nuclear phosphoprotein transcription factor, is critical for activating the expression of genes involved in cell-cycle arrest and stress-induced apoptosis. In neurodegenerative diseases the expression of p53 is significantly increased in glial cells, and microglial numbers fall. Following activation with chromogranin A (100 nM), or beta-amyloid(25-35), (10 microM), microglia became apoptotic. Furthermore, p53 expression was enhanced, peaking at 4-6 h after exposure to activators. The p53 transcription inhibitor, pifithrin-alpha, (10 microM) significantly reduced the expression of p53 in microglia and significantly modulated the levels of microglial apoptosis induced by activation. Lithium chloride (5 mM), which can modulate p53-mediated pathways, also reduced p53 expression and reduced microglial apoptosis suggesting glycogen synthase kinase-3 plays a role. Regulating p53 pathways modulated microglial inducible nitric oxide synthase expression and tumour necrosis factor alpha secretion. Inhibiting p53 mediated microglial apoptosis prevented microglial neurotoxicity suggesting targeting of p53-mediated pathways in microglia may have therapeutic benefit in Alzheimer's disease.
Asunto(s)
Péptidos beta-Amiloides/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Células Cultivadas , Cerebelo/citología , Cromogranina A/farmacología , Interacciones Farmacológicas , Ensayo de Inmunoadsorción Enzimática/métodos , Cloruro de Litio/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polisacáridos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , Tolueno/análogos & derivados , Tolueno/farmacología , Factor de Transcripción CHOP/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidoresRESUMEN
Negative feedback from horizontal cells to cone photoreceptors is regarded as the critical pathway for the formation of the antagonistic surround of retinal neurons, yet the mechanism by which horizontal cells accomplish negative feedback has been difficult to determine. Recent evidence suggests that feedback uses a novel, non-GABAergic pathway that directly modulates the calcium current in cones. In non-mammalian vertebrates, enrichment of retinal pH buffering capacity attenuates horizontal cell feedback, supporting one model in which feedback occurs by horizontal cell modulation of the extracellular pH in the cone synaptic cleft. Here we test the effect of exogenous pH buffering on the response dynamics of H1 horizontal cells and the center-surround receptive field structure of parasol ganglion cells in the macaque monkey retina. Enrichment of the extracellular buffering capacity with HEPES selectively attenuates surround antagonism in parasol ganglion cells. The H1 horizontal cell light response includes a slow, depolarizing component that is attributed to negative feedback to cones. This part of the response is attenuated by HEPES and other pH buffers in a dose-dependent manner that is correlated with predicted buffering capacity. The selective effects of pH buffering on the parasol cell surround and H1 cell light response suggests that, in primate retina, horizontal cell feedback to cones is mediated via a pH-dependent mechanism and is a major determinant of the ganglion cell receptive field surround.
Asunto(s)
Luz , Protones , Retina/citología , Células Ganglionares de la Retina , Células Horizontales de la Retina , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Tampones (Química) , Relación Dosis-Respuesta a Droga , HEPES/farmacología , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Macaca fascicularis , Macaca nemestrina , Estimulación Luminosa/métodos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Células Horizontales de la Retina/efectos de los fármacos , Células Horizontales de la Retina/fisiología , Células Horizontales de la Retina/efectos de la radiación , Visión OcularAsunto(s)
Compuestos de Bifenilo/química , Neurotransmisores/química , Ácido gamma-Aminobutírico/química , Animales , Química Encefálica , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Procesos Fotoquímicos , Fotólisis , Fotones , Células Piramidales/química , Células Piramidales/metabolismo , Ratas , Espectrofotometría Ultravioleta/métodos , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Exogenously expressed opsins are valuable tools for optogenetic control of neurons in circuits. A deeper understanding of neural function can be gained by bringing control to endogenous neurotransmitter receptors that mediate synaptic transmission. Here we introduce a comprehensive optogenetic toolkit for controlling GABA(A) receptor-mediated inhibition in the brain. We developed a series of photoswitch ligands and the complementary genetically modified GABA(A) receptor subunits. By conjugating the two components, we generated light-sensitive versions of the entire GABA(A) receptor family. We validated these light-sensitive receptors for applications across a broad range of spatial scales, from subcellular receptor mapping to in vivo photo-control of visual responses in the cerebral cortex. Finally, we generated a knockin mouse in which the "photoswitch-ready" version of a GABA(A) receptor subunit genomically replaces its wild-type counterpart, ensuring normal receptor expression. This optogenetic pharmacology toolkit allows scalable interrogation of endogenous GABA(A) receptor function with high spatial, temporal, and biochemical precision.
Asunto(s)
Encéfalo/citología , Inhibición Neural/fisiología , Optogenética/métodos , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Técnicas In Vitro , Ratones Noqueados , Mutación/genética , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Fosfinas/farmacología , Estimulación Luminosa , Receptores de GABA-A/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Optogenetics has become an emerging technique for neuroscience investigations owing to the great spatiotemporal precision and the target selectivity it provides. Here we extend the optogenetic strategy to GABAA receptors (GABAARs), the major mediators of inhibitory neurotransmission in the brain. We generated a light-regulated GABAA receptor (LiGABAR) by conjugating a photoswitchable tethered ligand (PTL) onto a mutant receptor containing the cysteine-substituted α1-subunit. The installed PTL can be advanced to or retracted from the GABA-binding pocket with 500 and 380 nm light, respectively, resulting in photoswitchable receptor antagonism. In hippocampal neurons, this LiGABAR enabled a robust photoregulation of inhibitory postsynaptic currents. Moreover, it allowed reversible photocontrol over neuron excitation in response to presynaptic stimulation. LiGABAR thus provides a powerful means for functional and mechanistic investigations of GABAAR-mediated neural inhibition.
Asunto(s)
Hipocampo/fisiología , Inhibición Neural , Optogenética/métodos , Receptores de GABA-A/metabolismo , Animales , Células Cultivadas , Células HEK293 , Hipocampo/citología , Humanos , Ligandos , Luz , Modelos Moleculares , Neuronas/citología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/química , Receptores de GABA-A/genética , XenopusRESUMEN
The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (approximately 400 microm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina.