Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 543(7643): 118-121, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199303

RESUMEN

Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.


Asunto(s)
Recuento de Células , Células Epiteliales/citología , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Mitosis , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Membrana Celular/metabolismo , Ciclina B/genética , Citoplasma/metabolismo , Perros , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Homeostasis , Humanos , Canales Iónicos/deficiencia , Canales Iónicos/genética , Células de Riñón Canino Madin Darby , Fosforilación , Transporte de Proteínas , Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
2.
Public Health ; 224: 51-57, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37734276

RESUMEN

OBJECTIVE: This study assessed the impacts of the Dekthai Kamsai programme on overweight/obesity, underweight and stunting among male and female primary school students. STUDY DESIGN: A quasi-experiment was conducted in 16 intervention and 19 control schools across Thailand in 2018 and 2019. In total, 896 treated and 1779 control students from grades 1 to 3 were recruited. In intervention schools, a set of multifaceted intervention components were added into school routine practices. Anthropometric outcomes were measured at baseline and at the beginning and end of every school term. METHODS: Propensity score matching with linear and Poisson difference-in-difference analyses were used to adjust for the non-randomisation and to analyse the intervention's effects over time. RESULTS: Compared with controls, the increases in mean BMI-for-age Z-score (BAZ) and the incidence rate of overweight/obesity were lower in the intervention schools at the 3rd, 4th and 8th measurements and the 3rd measurement, respectively. The decrease in mean height-for-age Z-score (HAZ) was lower at the 4th measurement. The decrease in the incidence rate of wasting was lower at the 5th, 7th and 8th measurements. The favourable impacts on BAZ and HAZ were found in both sexes, while the favourable impact on overweight/obesity and unfavourable impact on wasting were found in girls. CONCLUSIONS: This intervention might be effective in reducing BAZ, overweight/obesity, poor height gain, but not wasting. These findings highlight the benefits of a multifaceted school nutrition intervention and a need to incorporate tailor-made interventions for wasting to comprehensively address the double burden of malnutrition.

3.
BMC Public Health ; 22(1): 1932, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258168

RESUMEN

BACKGROUND: Studies have shown associations among food and activity behaviors and body weight of Latino fathers and adolescents. However, few Latino father-focused interventions have been designed to improve energy balance-related behaviors (EBRBs) and weight status among early adolescents. Thus, this efficacy study aims to evaluate the Padres Preparados, Jóvenes Saludables (Padres) youth obesity prevention program for positive changes in EBRBs (fruit, vegetable, sugar-sweetened beverage (SSB), sweet/salty snack, and fast-food consumption, physical activity, and screen time) and weight status among low-income Latino fathers and adolescents (10-14 years). METHODS: A two-arm (treatment versus delayed-treatment control group) randomized controlled trial was conducted to evaluate the efficacy of 8 weekly experiential learning sessions (2.5 hours each) based on social cognitive theory. The sessions included food preparation, parenting skills, nutrition, and physical activity. The program was delivered to father-adolescent dyads (mothers were encouraged to attend) in trusted community-based settings in a Midwest metropolitan area between 2017 and 2019. In March 2020, in-person implementation was discontinued due to COVID-19 pandemic restrictions, which limited the sample size. Father/adolescent dyads were randomized to treatment or control group within each site. Surveys and measurements were completed by fathers and adolescents to assess changes in food and activity behaviors from baseline to post-intervention. Adolescents also completed 24-hour dietary recall interviews at baseline and post-intervention. Intervention effects were assessed using linear regression mixed models adjusted for covariates and accounting for clustering of participants within sites. RESULTS: Data from 147 father/adolescent dyads who completed at least the baseline data collection were used. No significant differences were observed for baseline to post-intervention changes in adolescents' and fathers' EBRBs or weight status between treatment and control groups. Fathers' SSB and fast food intakes were not statistically significant (p = 0.067 and p = 0.090, respectively). CONCLUSIONS: The Padres program resulted in no significant improvements in adolescent and father EBRBs and weight status. Additional Latino father-focused interventions are needed to examine intervention effects on EBRBs among Latino adolescents. TRIAL REGISTRATION: The Padres Preparados, Jóvenes Saludables study is registered with the U.S. National Library of Medicine, ClinicalTrials.gov Identifier: NCT03469752 (19/03/2018).


Asunto(s)
Conducta del Adolescente , COVID-19 , Adolescente , Femenino , Humanos , Hispánicos o Latinos , Pandemias , Tiempo de Pantalla , Obesidad Infantil/prevención & control , Padre
4.
J Memb Sci ; 627: 119245, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34083864

RESUMEN

Whilst reverse electrodialysis (RED) has been extensively characterised for saline gradient energy from seawater/river water (0.5 M/0.02 M), less is known about RED stack design for high concentration salinity gradients (4 M/0.02 M), important to closed loop applications (e.g. thermal-to-electrical, energy storage). This study therefore focuses on the scale-up of RED stacks for high concentration salinity gradients. Higher velocities were required to attain a maximum Open Circuit Voltage (OCV) for 4 M/0.02 M, which gives a measure of the electrochemical potential of the cell. The experimental OCV was also much below the theoretical OCV, due to the greater boundary layer resistance observed, which is distinct from 0.5 M/0.02 M. However, negative net power density (net produced electrical power divided by total membrane area) was demonstrated with 0.5 M/0.02 M for larger stacks using shorter residence times (three stack sizes tested: 10 × 10cm, 10 × 20cm and 10 × 40cm). In contrast, the highest net power density was observed at the shortest residence time for the 4 M/0.02 M concentration gradient, as the increased ionic flux compensated for the pressure drop. Whilst comparable net power densities were determined for the 10 × 10cm and 10 × 40cm stacks using the 4 M/0.02 M concentration gradient, the osmotic and ionic transport mechanisms are distinct. Increasing cell pair number improved maximum current density. This subsequently increased power density, due to the reduction in boundary layer resistance, and may therefore be used to improve thermodynamic efficiency and power density from RED for high concentrations. Although comparable power densities may be achieved for small and large stacks, large stacks maybe preferred for high concentration salinity gradients due to the comparative benefit in thermodynamic efficiency in single pass. The greater current achieved by large stacks may also be complemented by an increase in cell pair number and current density optimisation to increase power density and reduce exergy losses.

5.
Sep Purif Technol ; 263: 118390, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34002109

RESUMEN

Water recovery from concentrated blackwater has been studied using air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) to deliver decentralised sanitation. Whilst good water quality was achieved with each configuration, differences in the rejection of volatile compounds was observed. VMD exhibited the highest rejection of volatiles, specifically ammoniacal nitrogen, of all the configurations but fouling inhibited total flux. DCMD exhibited a temperature dependent volatile rejection which resulted in poor rejection at lower feed temperatures (≤40 °C). AGMD was identified as the most promising configuration for application within decentralised sanitation, since the rejection of volatiles was consistent over a range of operating temperatures with ammonia rejection directly related to solution pH. An increase in organic colloids and particles due to faecal contamination reduced COD removal due to the induction of wetting, but was shown to be offset by adoption of a smaller pore size (0.1 µm), and when complemented with upstream solid-liquid separation within a fully integrated system, will provide a robust sanitation solution. Importantly, this work has shown that AGMD can recover water from concentrated blackwater close to international discharge and reuse regulations in a single stage process; this is significant as blackwater consists of only urine and faeces, and is thus 40 times more concentrated than municipal sewage. It is proposed that the water quality produced reflects a step change to delivering safe sanitation, and is complemented by a simple method for heat recovery integration this is similarly advantageous for resource constrained environments common to decentralised sanitation solutions.

6.
Energy Convers Manag ; 244: None, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34538999

RESUMEN

In this study, stack design for high concentration gradient reverse electrodialysis operating in recycle is addressed. High concentration gradients introduce complex transport phenomena, which are exacerbated when recycling feeds; a strategy employed to improve system level energy efficiency. This unique challenge indicates that membrane properties and spacer thickness requirements may differ considerably from reverse electrodialysis for lower concentration gradients (e.g. seawater/river water), drawing closer parallels to electrodialysis stack design. Consequently, commercially available electrodialysis and reverse electrodialysis stack design was first compared for power generation from high concentration gradients. Higher gross power densities were identified for the reverse electrodialysis stack, due to the use of thinner membranes characterised by a higher permselectivity, which improved current. However, energy efficiency of the electrodialysis stack was twice that recorded for the reverse electrodialysis stack at low current densities, which was attributed to: (i) an increased residence time provided by the larger intermembrane distance, and (ii) reduced exergy losses of the electrodialysis membranes, which provided comparatively lower water permeance. Further in-depth investigation into membrane properties and spacer thickness identified that membranes characterised by an intermediate water permeability and ohmic resistance provided the highest power density and energy efficiency (Neosepta ACS/CMS), while wider intermembrane distances up to 0.3 mm improved energy efficiency. This study confirms that reverse electrodialysis stacks for high concentration gradients in recycle therefore demand design more comparable to electrodialysis stacks to drive energy efficiency, but when selecting membrane properties, the trade-off with permselectivity must also be considered to ensure economic viability.

7.
Angew Chem Int Ed Engl ; 60(19): 10935-10941, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33620140

RESUMEN

We report on the wavelength-selective photopolymerization of a hybrid acrylate-oxetane cholesteric liquid crystal monomer mixture. By controlling the sequence and rate of the orthogonal free-radical and cationic photopolymerization reactions, it is possible to control the degree of phase separation in the resulting liquid crystal interpenetrating networks. We show that this can be used to tune the reflective color of the structurally colored coatings produced. Conversely, the structural color can be used to monitor the degree of phase separation. Our new photopolymerization procedure allows for structuring liquid crystal networks in three dimensions, which has great potential for fabricating liquid crystal polymer materials with programmable functional properties.

8.
Soft Matter ; 16(22): 5106-5119, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32459272

RESUMEN

Liquid crystalline elastomers (LCEs) and liquid crystalline networks (LCNs) are classes of polymers very suitable for fabricating advanced functional materials. Two main pathways to obtain LCEs and LCNs have gained the most attention in the literature, namely the two-step crosslinking of LC side-chain polymers and the photoinitiated free-radical polymerisation of acrylate LC monomers. These liquid crystal polymers have demonstrated remarkable properties resulting from their anisotropic shapes, being used in soft robotics, responsive surfaces and as photonic materials. In this review, we will show that LCs with cyclic ethers as polymerisable groups can be an attractive alternative to the aforementioned reactive acrylate mesogens. These epoxide and oxetane based reactive mesogens could offer a number of advantages over their acrylate-based counterparts, including oxygen insensitivity, reduced polymerisation shrinkage, improved alignment, lower processing viscosity and potentially extended resistivity. In this review, we summarise the research on these materials from the past 30 years and offer a glimpse into the potential of these cyclic ether mesogens.

9.
Sep Purif Technol ; 253: 117547, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33335447

RESUMEN

In this study, the pretreatment of concentrated blackwater using ultrafiltration (UF) was shown to improve the permeability, selectivity and robustness of membrane distillation (MD) for application to wastewater treatment. Concentrated blackwater comprises urine and faeces, with minimal flushwater added. The faecal contribution increased the soluble organic fraction and introduced coarse and colloidal particles into the urine, which increased resistance to filtration during dead-end UF. Ultrafiltration removed the particulate and colloidal fractions (MW > 500 kDa) from the blackwater, which permitted similar permeability and robustness for MD to that observed with urine (29.9 vs 25.9 kg m-2 h-1), which comprises a lower colloidal organic concentration. Without UF pretreatment, a higher density organic layer formed on the MD surface (197 vs 70 gCOD m-2) which reduced mass transfer, and transformed the contact angle from hydrophobic to hydrophilic (144.9° to 49.8°), leading to pore wetting and a dissipation in product water quality due to breakthrough. In comparison, with UF pretreatment, MD delivered permeate water quality to standards satisfactory for discharge or reuse. This is particularly timely as the ISO standard for non-sewered sanitation has been adopted by several countries at a national level, and to date there are relatively few technologies to achieve the treatment standard. Membrane distillation provides a robust means for concentrated blackwater treatment, and since the energy required for separation is primarily heat, this advanced treatment can be delivered into areas with more fragile power networks.

10.
Desalination ; 496: 114711, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33335330

RESUMEN

Whilst the efficiency of reverse electrodialysis (RED) for thermal-to-electrical conversion has been theoretically demonstrated for low-grade waste heat, the specific configuration and salinity required to manage power generation has been less well described. This study demonstrates that operating RED by recycling feed solutions provides the most suitable configuration for energy recovery from a fixed solution volume, providing a minimum unitary cost for energy production. For a fixed membrane area, recycling feeds achieves energy efficiency seven times higher than single pass (conventional operation), and with an improved power density. However, ionic transport, water flux and concentration polarisation introduce complex temporal effects when concentrated brines are recirculated, that are not ordinarily encountered in single pass systems. Regeneration of the concentration gradient at around 80% energy dissipation was deemed most economically pragmatic, due to the increased resistance to mass transport beyond this threshold. However, this leads to significant exergy destruction that could be improved by interventions to better control ionic build up in the dilute feed. Further improvements to energy efficiency were fostered through optimising current density for each brine concentration independently. Whilst energy efficiency was greatest at lower brine concentrations, the work produced from a fixed volume of feed solution was greatest at higher saline concentrations. Since the thermal-to-electrical conversion proposed is governed by volumetric heat utilisation (distillation to reset the concentration gradient), higher brine concentrations are therefore recommended to improve total system efficiency. Importantly, this study provides new evidence for the configuration and boundary conditions required to realise RED as a practical solution for application to sources of low-grade waste heat in industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA