Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 53(6): 1056-70, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22357704

RESUMEN

Postnatal intestinal ontogenesis in an animal model of diabesity may recapitulate morphological and transduction features of diabesity-induced intestinal dysplasia and its amelioration by endogenous (n-3) polyunsaturated fatty acids (PUFA). Proliferation, differentiation, and transduction aspects of intestinal ontogenesis have been studied here in obese, insulin-resistant db/db mice, in fat-1 transgene coding for desaturation of (n-6) PUFA into (n-3) PUFA, in db/db crossed with fat-1 mice, and in control mice. Diabesity resulted in increased colonic proliferation and dedifferentiation of epithelial colonocytes and goblet cells, with increased colonic ß-catenin and hepatocyte nuclear factor (HNF)-4α transcriptional activities accompanied by enrichment in HNF-4α-bound (n-6) PUFA. In contrast, in fat-1 mice, colonic proliferation was restrained, accompanied by differentiation of crypt stem cells into epithelial colonocytes and goblet cells and by decrease in colonic ß-catenin and HNF-4α transcriptional activities, with concomitant enrichment in HNF-4α-bound (n-3) PUFA at the expense of (n-6) PUFA. Colonic proliferation and differentiation, the profile of ß-catenin and HNF-4α-responsive genes, and the composition of HNF-4α-bound PUFA of db/db mice reverted to wild-type by introducing the fat-1 gene into the db/db context. Suppression of intestinal HNF-4α activity by (n-3) PUFA may ameliorate diabesity-induced intestinal ontogenesis and offer an effective preventive modality for colorectal cancer.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos Omega-3/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patología , Animales , Diferenciación Celular , Proliferación Celular , Colon/metabolismo , Colon/patología , Ratones , Fenotipo , Transducción de Señal , Especificidad de la Especie
2.
DNA Repair (Amst) ; 44: 59-67, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27262613

RESUMEN

The multitude of DNA lesions that continuously form in DNA cannot all be detected and removed prior to replication. Thus, encounters of the replication fork with DNA damage become inevitable. Such encounters inhibit fork progression, leading to replication fork arrest or to replication re-priming downstream of the damage site. Either of these events will result in the formation of gap-lesion structures, in which a damaged base is located in a single stranded stretch of DNA, that is vulnerable to subsequent nicking. The double strand break that would ensue if ssDNA becomes nicked constitutes escalation of the damage from nucleotide(s)-specific to chromosomal scale. Cells employ two universal DNA damage tolerance (DDT) strategies to resolve these situations, by converting the gap-lesion structures into dsDNA without repairing the damage. The first is translesion DNA synthesis (TLS), in which a specialized low-fidelity DNA polymerase inserts a nucleotide opposite the damaged one. TLS is inherently mutagenic, due to the miscoding nature of most damaged nucleotides. The second strategy is homology-dependent repair (HDR), which relies on the presence of an identical intact sister chromatid. The molecular mechanisms that regulate the division of labor between these pathways are poorly understood. This review focuses on the balance between TLS and HDR in mammalian cells, discussing recent findings that were made possible thanks to newly developed high resolution genomic assays, and highlighting the role of the DNA lesion's properties in DDT pathway choice.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Reparación del ADN por Recombinación , Animales , Disparidad de Par Base , Bioensayo , Dominio Catalítico , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades , Replicación del ADN , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Modelos Genéticos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA