Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ecol ; 32(5): 1000-1019, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511846

RESUMEN

The blue shark Prionace glauca is a top predator with one of the widest geographical distributions of any shark species. It is classified as Critically Endangered in the Mediterranean Sea, and Near Threatened globally. Previous genetic studies did not reject the null hypothesis of a single global population. The blue shark was proposed as a possible archetype of the "grey zone of population differentiation," coined to designate cases where population structure may be too recent or too faint to be detected using a limited set of markers. Here, blue shark samples collected throughout its global range were sequenced using a specific RAD method (DArTseq), which recovered 37,655 genome-wide single nucleotide polymorphisms (SNPs). Two main groups emerged, with Mediterranean Sea and northern Atlantic samples (Northern population) differentiated significantly from the Indo-west Pacific samples (Southern population). Significant pairwise FST values indicated further genetic differentiation within the Atlantic Ocean, and between the Atlantic Ocean and the Mediterranean Sea. Reconstruction of recent demographic history suggested divergence between Northern and Southern populations occurred about 500 generations ago and revealed a drastic reduction in effective population size from a large ancestral population. Our results illustrate the power of genome scans to detect population structure and reconstruct demographic history in highly migratory marine species. Given that the management plans of the blue shark (targeted or bycatch) fisheries currently assume panmictic regional stocks, we strongly recommend that the results presented here be considered in future stock assessments and conservation strategies.


Asunto(s)
Polimorfismo de Nucleótido Simple , Tiburones , Animales , Polimorfismo de Nucleótido Simple/genética , Tiburones/genética , Densidad de Población , Flujo Genético , Océano Atlántico
2.
Sci Rep ; 12(1): 18606, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329078

RESUMEN

Globally, tunas are among the most valuable fish stocks, but are also inherently difficult to monitor and assess. Samples of larvae of Western Atlantic bluefin tuna Thunnus thynnus (Linnaeus, 1758) from standardized annual surveys in the northern Gulf of Mexico provide a potential source of "offspring" for close-kin mark-recapture (CKMR) estimates of abundance. However, the spatial patchiness and highly skewed numbers of larvae per tow suggest sampled larvae may come from a small number of parents, compromising the precision of CKMR. We used high throughput genomic profiling to study sibship within and among larval tows from the 2016 standardized Gulf-wide survey compared to targeted sampling carried out in 2017. Full- and half-siblings were found within both years, with 12% of 156 samples in 2016 and 56% of 317 samples in 2017 having at least one sibling. There were also two pairs of cross cohort half-siblings. Targeted sampling increased the number of larvae collected per sampling event but resulted in a higher proportion of siblings. The combined effective sample size across both years was about 75% of the nominal size, indicating that Gulf of Mexico larval collections could be a suitable source of juveniles for CKMR in Western Atlantic bluefin tuna.


Asunto(s)
Atún , Animales , Atún/genética , Larva , Golfo de México , Océano Atlántico
3.
PLoS One ; 16(11): e0259113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34735482

RESUMEN

In population genetics, the amount of information for an analytical task is governed by the number of individuals sampled and the amount of genetic information measured on each of those individuals. In this work, we assessed the numbers of individual yellowfin tuna (Thunnus albacares) and genetic markers required for ocean-basin scale inferences. We assessed this for three distinct data analysis tasks that are often employed: testing for differences between genetic profiles; stock delineation, and; assignment of individuals to stocks. For all analytical tasks, we used real (not simulated) data from four sampling locations that span the tropical Pacific Ocean. Whilst spatially separated, the genetic differences between the sampling sites were not substantial, a maximum of approximately Fst = 0.02, which is quite typical of large pelagic fish. We repeatedly sub-sampled the data, mimicking a new survey, and performed the analyses. False positive rates were also assessed by re-sampling and randomly assigning fish to groups. Varying the sample sizes indicated that some analytical tasks, namely profile testing, required relatively few individuals per sampling location (n ≳ 10) and single nucleotide polymorphisms (SNPs, m ≳ 256). Stock delineation required more individuals per sampling location (n ≳ 25). Assignment of fish to sampling locations required substantially more individuals, more in fact than we had available (n > 50), although this sample size could be reduced to n ≳ 30 when individual fish were assumed to belong to one of the groups sampled. With these results, designers of molecular ecological surveys for yellowfin tuna, and users of information from them, can assess whether the information content is adequate for the required inferential task.


Asunto(s)
Genética de Población/métodos , Polimorfismo de Nucleótido Simple , Atún/genética , Animales , Marcadores Genéticos , Océano Pacífico , Densidad de Población , Encuestas y Cuestionarios
4.
Adv Mar Biol ; 88: 39-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34119046

RESUMEN

Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna are the target species of tropical tuna fisheries in the Indian Ocean, with high commercial value in the international market. High fishing pressure over the past three decades has raised concerns about their sustainability. Understanding life history strategies and stock structure is essential to determine species resilience and how they might respond to exploitation. Here we provide a comprehensive review of available knowledge on the biology, ecology, and stock structure of tropical tuna species in the Indian Ocean. We describe the characteristics of Indian Ocean tropical tuna fisheries and synthesize skipjack, yellowfin, and bigeye tuna key life history attributes such as biogeography, trophic ecology, growth, and reproductive biology. In addition, we evaluate the available literature about their stock structure using different approaches such as analysis of fisheries data, genetic markers, otolith microchemistry and tagging, among others. Based on this review, we conclude that there is a clear lack of ocean basin-scale studies on skipjack, yellowfin and bigeye tuna life history, and that regional stock structure studies indicate that the panmictic population assumption of these stocks should be investigated further. Finally, we identify specific knowledge gaps that should be addressed with priority to ensure a sustainable and effective management of these species.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Atún , Animales , Peces , Océano Índico
5.
PLoS One ; 16(3): e0249327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780495

RESUMEN

The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year (<6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (Li:Ca, Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) and stable isotopic (δ13C, δ18O) signatures were used, from individuals captured in 2018 and 2019. Otolith Sr:Ca, Ba:Ca, Mg:Ca and δ18O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures associated with seasonal changes in oceanographic conditions must be well understood, particularly for species with several reproductive peaks throughout the year. Otolith microchemistry in conjunction with other techniques (e.g., genetics, particle tracking) should be further investigated to resolve skipjack stock structure, which will ultimately contribute to the sustainable management of this stock in the Indian Ocean.


Asunto(s)
Membrana Otolítica/química , Atún , Animales , Océano Índico , Oligoelementos/análisis
6.
Sci Rep ; 9(1): 17866, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831772

RESUMEN

Biological ageing and its mechanistic underpinnings are of immense biomedical and ecological significance. Ageing involves the decline of diverse biological functions and places a limit on a species' maximum lifespan. Ageing is associated with epigenetic changes involving DNA methylation. Furthermore, an analysis of mammals showed that the density of CpG sites in gene promoters, which are targets for DNA methylation, is correlated with lifespan. Using 252 whole genomes and databases of animal age and promotor sequences, we show a pattern across vertebrates. We also derive a predictive lifespan clock based on CpG density in a selected set of promoters. The lifespan clock accurately predicts maximum lifespan in vertebrates (R2 = 0.76) from the density of CpG sites within only 42 selected promoters. Our lifespan clock provides a wholly new method for accurately estimating lifespan using genome sequences alone and enables estimation of this challenging parameter for both poorly understood and extinct species.


Asunto(s)
Genoma/genética , Longevidad/genética , Vertebrados/genética , Animales , Islas de CpG/genética , Islas de CpG/fisiología , Extinción Biológica , Peces/genética , Peces/fisiología , Genoma/fisiología , Humanos , Modelos Estadísticos , Filogenia , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Vertebrados/fisiología
7.
Mol Ecol Resour ; 18(6): 1310-1325, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29943898

RESUMEN

Delineating naturally occurring and self-sustaining subpopulations (stocks) of a species is an important task, especially for species harvested from the wild. Despite its central importance to natural resource management, analytical methods used to delineate stocks are often, and increasingly, borrowed from superficially similar analytical tasks in human genetics even though models specifically for stock identification have been previously developed. Unfortunately, the analytical tasks in resource management and human genetics are not identical-questions about humans are typically aimed at inferring ancestry (often referred to as "admixture") rather than breeding stocks. In this article, we argue, and show through simulation experiments and an analysis of yellowfin tuna data, that ancestral analysis methods are not always appropriate for stock delineation. In this work, we advocate a variant of a previously introduced and simpler model that identifies stocks directly. We also highlight that the computational aspects of the analysis, irrespective of the model, are difficult. We introduce some alternative computational methods and quantitatively compare these methods to each other and to established methods. We also present a method for quantifying uncertainty in model parameters and in assignment probabilities. In doing so, we demonstrate that point estimates can be misleading. One of the computational strategies presented here, based on an expectation-maximization algorithm with judiciously chosen starting values, is robust and has a modest computational cost.


Asunto(s)
Biología Computacional/métodos , Marcadores Genéticos , Técnicas de Genotipaje/métodos , Ganado/clasificación , Ganado/genética , Animales , Cruzamiento , Simulación por Computador , Atún/clasificación , Atún/genética
8.
Sci Rep ; 8(1): 14553, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266923

RESUMEN

Large scale migrations are a key component of the life history of many marine species. We quantified the annual migration cycle of juvenile southern bluefin tuna (Thunnus maccoyii; SBT) and spatiotemporal variability in this cycle, based on a multi-decadal electronic tagging dataset. Behaviour-switching models allowed for the identification of cohesive areas of residency and classified the temporal sequence of movements within a migration cycle from austral summer foraging grounds in the Great Australian Bight (GAB) to winter foraging grounds in the Indian Ocean and Tasman Sea and back to the GAB. Although specific regions within the Indian Ocean were frequented, individuals did not always return to the same area in consecutive years. Outward migrations from the GAB were typically longer than return migrations back to the GAB. The timing of individual arrivals to the GAB, which may be driven by seasonality in prey availability, was more cohesive than the timing of departures from the GAB, which may be subject to the physiological condition of SBT. A valuable fishery for SBT operates in the GAB, as do a number of scientific research programs designed to monitor SBT for management purposes; thus, understanding SBT migration to and from the area is of high importance to a number of stakeholders.


Asunto(s)
Migración Animal , Atún , Animales , Australia , Ecosistema , Océano Índico , Dinámica Poblacional , Estaciones del Año , Atún/fisiología
9.
Nat Commun ; 7: 13162, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841264

RESUMEN

Southern bluefin tuna is a highly valuable, severely depleted species, whose abundance and productivity have been difficult to assess with conventional fishery data. Here we use large-scale genotyping to look for parent-offspring pairs among 14,000 tissue samples of juvenile and adult tuna collected from the fisheries, finding 45 pairs in total. Using a modified mark-recapture framework where 'recaptures' are kin rather than individuals, we can estimate adult abundance and other demographic parameters such as survival, without needing to use contentious fishery catch or effort data. Our abundance estimates are substantially higher and more precise than previously thought, indicating a somewhat less-depleted and more productive stock. More broadly, this technique of 'close-kin mark-recapture' has widespread utility in fisheries and wildlife conservation. It estimates a key parameter for management-the absolute abundance of adults-while avoiding the expense of independent surveys or tag-release programmes, and the interpretational problems of fishery catch rates.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Explotaciones Pesqueras , Atún/fisiología , Algoritmos , Animales , Genotipo , Modelos Teóricos , Densidad de Población , Dinámica Poblacional , Atún/genética
10.
PLoS One ; 10(5): e0125744, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993276

RESUMEN

Knowledge of spawning behaviour and fecundity of fish is important for estimating the reproductive potential of a stock and for constructing appropriate statistical models for assessing sustainable catch levels. Estimates of length-based reproductive parameters are particularly important for determining potential annual fecundity as a function of fish size, but they are often difficult to estimate reliably. Here we provide new information on the reproductive dynamics of southern bluefin tuna (SBT) Thunnus maccoyii through the analysis of fish size and ovary histology collected on the spawning ground in 1993-1995 and 1999-2002. These are used to refine previous parameter estimates of spawning dynamics and investigate size related trends in these parameters. Our results suggest that the small SBT tend to arrive on the spawning ground slightly later and depart earlier in the spawning season relative to large fish. All females were mature and the majority were classed as spawning capable (actively spawning or non-spawning) with a very small proportion classed as regressing. The fraction of females spawning per day decreased with fish size, but once females start a spawning episode, they spawned daily irrespective of size. Mean batch fecundity was estimated directly at 6.5 million oocytes. Analysis of ovary histology and ovary weight data indicated that relative batch fecundity, and the duration of spawning and non-spawning episodes, increased with fish size. These reproductive parameter estimates could be used with estimates of residency time on the spawning ground as a function of fish size (if known) and demographic data for the spawning population to provide a time series of relative annual fecundity for SBT.


Asunto(s)
Reproducción/fisiología , Atún/fisiología , Animales , Tamaño Corporal , Femenino , Fertilidad/fisiología , Explotaciones Pesqueras , Indonesia , Tamaño de los Órganos , Ovario/anatomía & histología , Ovario/fisiología , Estaciones del Año , Atún/anatomía & histología
11.
PLoS One ; 9(1): e83017, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416153

RESUMEN

Length and age at maturity are important life history parameters for estimating spawning stock biomass and reproductive potential of fish stocks. Bias in estimates of size and age at maturity can arise when disparate distributions of mature and immature fish within a population are not accounted for in the analysis. Here we investigate the spatial and temporal variability in observed size and age at maturity of female albacore tuna, Thunnus alalunga, using samples collected across the South Pacific. Maturity status was identified using consistent histological criteria that were precise enough to allow for mature but regenerating females to be distinguished from immature females during the non-spawning season, permitting year-round sampling for maturity estimation in albacore. Using generalised linear mixed models, we found that the proportion of mature females at length varied significantly with latitude and time of year. Specifically, females at northern latitudes (∼10-20°S, where spawning occurs) were mature at significantly smaller lengths and ages than females at southern latitudes (∼20-40°S), particularly during the spawning season (October-March). This variation was due to different geographic distributions of mature and immature fish during the year. We present a method for estimating an unbiased maturity ogive that takes into account the latitudinal variation in proportion mature at length during a given season (spawning or non-spawning). Applying this method to albacore samples from the western region of the South Pacific gave a predicted length at 50% mature of ∼87 cm fork length (4.5 years).


Asunto(s)
Estaciones del Año , Estadística como Asunto , Atún/crecimiento & desarrollo , Animales , Tamaño Corporal , Femenino , Geografía , Modelos Biológicos , Ovario/citología , Océano Pacífico , Factores de Tiempo , Atún/anatomía & histología
12.
PLoS One ; 9(5): e96392, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24797529

RESUMEN

The demographics of the southern bluefin tuna (SBT) Thunnus maccoyii spawning stock were examined through a large-scale monitoring program of the Indonesian longline catch on the spawning ground between 1995 and 2012. The size and age structure of the spawning population has undergone significant changes since monitoring began. There has been a reduction in the relative abundance of larger/older SBT in the catch since the early 2000s, and a corresponding decrease in mean length and age, but there was no evidence of a significant truncation of the age distribution. Pulses of young SBT appear in the catches in the early- and mid-2000s and may be the first evidence of increased recruitment into the spawning stock since 1995. Fish in these two recruitment pulses were spawned around 1991 and 1997. Size-related variations in sex ratio were also observed with female bias for fish less than 170 cm FL and male bias for fish greater than 170 cm FL. This trend of increasing proportion of males with size above 170 cm FL is likely to be related to sexual dimorphism in growth rates as male length-at-age is greater than that for females after age 10 years. Mean length-at-age of fish aged 8-10 years was greater for both males and females on the spawning ground than off the spawning ground, suggesting that size may be the dominant factor determining timing of maturation in SBT. In addition to these direct results, the data and samples from this program have been central to the assessment and management of this internationally harvested stock.


Asunto(s)
Atún/fisiología , Animales , Tamaño Corporal , Femenino , Masculino , Dinámica Poblacional , Caracteres Sexuales , Razón de Masculinidad , Conducta Sexual Animal , Atún/anatomía & histología , Atún/crecimiento & desarrollo
13.
PLoS One ; 8(4): e60577, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565258

RESUMEN

The reproductive biology of albacore tuna, Thunnus alalunga, in the South Pacific Ocean was investigated with samples collected during broad-scale sampling between 2006 and 2011. Histology was done in a single laboratory according to standard protocols and the data analysed using generalized linear mixed-effects models. The sex ratio of albacore was female biased for fish smaller than approximately 60 cm FL and between 85 and 95 cm, and progressively more male biased above 95 cm FL. Spawning activity was synchronised across the region between 10°S and 25°S during the austral spring and summer where sea surface temperatures were ≥24 °C. The average gonad index varied among regions, with fish in easterly longitudes having heavier gonads for their size than fish in westerly longitudes. Albacore, while capable of spawning daily, on average spawn every 1.3 days during the peak spawning months of October to December. Spawning occurs around midnight and the early hours of the morning. Regional variation in spawning frequency and batch fecundity were not significant. The proportion of active females and the spawning fraction increased with length and age, and mature small and young fish were less active at either end of the spawning season than larger, older fish. Batch fecundity estimates ranged from 0.26 to 2.83 million oocytes with a mean relative batch fecundity of 64.4 oocytes per gram of body weight. Predicted batch fecundity and potential annual fecundity increased with both length and age. This extensive set of reproductive parameter estimates provides many of the first quantitative estimates for this population and will substantially improve the quality of biological inputs to the stock assessment for South Pacific albacore.


Asunto(s)
Fertilidad/fisiología , Perciformes/fisiología , Reproducción/fisiología , Atún/fisiología , Animales , Peso Corporal/fisiología , Femenino , Masculino , Oocitos/citología , Océano Pacífico , Estaciones del Año , Razón de Masculinidad
14.
PLoS One ; 7(6): e39318, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723993

RESUMEN

Spatial variation in growth is a common feature of demersal fish populations which often exist as discrete adult sub-populations linked by a pelagic larval stage. However, it remains unclear whether variation in growth occurs at similar spatial scales for populations of highly migratory pelagic species, such as tuna. We examined spatial variation in growth of albacore Thunnus alalunga across 90° of longitude in the South Pacific Ocean from the east coast of Australia to the Pitcairn Islands. Using length-at-age data from a validated ageing method we found evidence for significant variation in length-at-age and growth parameters (L(∞) and k) between sexes and across longitudes. Growth trajectories were similar between sexes up until four years of age, after which the length-at-age for males was, on average, greater than that for females. Males reached an average maximum size more than 8 cm larger than females. Length-at-age and growth parameters were consistently greater at more easterly longitudes than at westerly longitudes for both females and males. Our results provide strong evidence that finer spatial structure exists within the South Pacific albacore stock and raises the question of whether the scale of their "highly migratory" nature should be re-assessed. Future stock assessment models for South Pacific albacore should consider sex-specific growth curves and spatial variation in growth within the stock.


Asunto(s)
Atún/crecimiento & desarrollo , Factores de Edad , Animales , Tamaño Corporal , Femenino , Masculino , Océano Pacífico , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA