Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941593

RESUMEN

Kaposi sarcoma herpesvirus (KSHV)-associated disorders include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated multicentric Castleman disease (MCD) and KSHV-inflammatory cytokine syndrome (KICS). PEL, MCD, and KICS are associated with elevated circulating inflammatory cytokines. However, activation of the inflammasome, which generates IL-1 and IL-18 via active caspase-1/4/5, has not been evaluated in patients with KAD. Here we report that patients with HIV and one or more KAD present with higher plasma levels of IL-18 and increased caspase-1/4/5 activity in circulating monocytes as compared to HIV-negative healthy volunteers (HV) or people with HIV without KAD (PWH). Within KAD subtypes, KICS and MCD shared enhanced caspase-1/4/5 activity and IL-18 production when compared to HV and PWH, while patients with PEL showed remarkably high levels of inflammasome complex formation (known as apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC)-speck). Moreover, caspase-1/4/5 activity and IL-18 plasma levels correlated with KSHV viral load, indicating KSHV-driven inflammasome activation in KAD. Accordingly, factors released by KSHV-latently infected cells triggered inflammasome activation and cytokine production in bystander monocytes, in vitro. Finally, both supervised and unsupervised analyses with inflammasome measurements and other inflammatory biomarkers demonstrate a unique inflammatory profile in patients with PEL, MCD, and KICS as compared to KS. Our data indicate that detrimental inflammation in patients with KAD is at least partially driven by KSHV-induced inflammasome activation in monocytes, thus offering novel approaches to diagnose and treat these complex disorders.

2.
PLoS Pathog ; 17(1): e1009091, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411730

RESUMEN

Pomalidomide (Pom) is an immunomodulatory drug that has efficacy against Kaposi's sarcoma, a tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Pom also induces direct cytotoxicity in primary effusion lymphoma (PEL), a B-cell malignancy caused by KSHV, in part through downregulation of IRF4, cMyc, and CK1α as a result of its interaction with cereblon, a cellular E3 ubiquitin ligase. Additionally, Pom can reverse KSHV-induced downregulation of MHCI and co-stimulatory immune surface molecules ICAM-1 and B7-2 on PELs. Here, we show for the first time that Pom-induced increases in ICAM-1 and B7-2 on PEL cells lead to an increase in both T-cell activation and NK-mediated cytotoxicity against PEL. The increase in T-cell activation can be prevented by blocking ICAM-1 and/or B7-2 on the PEL cell surface, suggesting that both ICAM-1 and B7-2 are important for T-cell co-stimulation by PELs. To gain mechanistic insights into Pom's effects on surface markers, we generated Pom-resistant (PomR) PEL cells, which showed about 90% reduction in cereblon protein level and only minimal changes in IRF4 and cMyc upon Pom treatment. Pom no longer upregulated ICAM-1 and B7-2 on the surface of PomR cells, nor did it increase T-cell and NK-cell activation. Cereblon-knockout cells behaved similarly to the pomR cells upon Pom-treatment, suggesting that Pom's interaction with cereblon is necessary for these effects. Further mechanistic studies revealed PI3K signaling pathway as being important for Pom-induced increases in these molecules. These observations provide a rationale for the study of Pom as therapy in treating PEL and other KSHV-associated tumors.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antígeno B7-2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Linfoma de Efusión Primaria/inmunología , Linfocitos T/inmunología , Talidomida/análogos & derivados , Antígeno B7-2/genética , Humanos , Molécula 1 de Adhesión Intercelular/genética , Linfoma de Efusión Primaria/tratamiento farmacológico , Linfoma de Efusión Primaria/patología , Transducción de Señal , Linfocitos T/efectos de los fármacos , Talidomida/farmacología , Células Tumorales Cultivadas
3.
J Med Virol ; 95(9): e29071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37665216

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi sarcoma and several other tumors and hyperproliferative diseases seen predominantly in human immunodeficiency virus-infected and other immunocompromised persons. There is an increasing body of evidence showing that hypoxia and hypoxia-inducible factors (HIFs) play important roles in the biology of KSHV and in the pathogenesis of KSHV-induced diseases. Hypoxia and HIFs can induce lytic activation of KSHV and KSHV can in turn lead to a hypoxic-like state in infected cells. In this review, we describe the complex interactions between KSHV biology, the cellular responses to hypoxia, and the pathogenesis of KSHV-induced diseases. We also describe how interference with HIFs can lead to decreased tumor growth and/or death of infected cells and KSHV-induced tumors. Finally, we show how these observations may lead to novel strategies for the treatment of KSHV-induced diseases.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Hipoxia , Huésped Inmunocomprometido
4.
J Hepatol ; 74(5): 1075-1086, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333207

RESUMEN

BACKGROUND & AIMS: While certain nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are efficacious in treating HBV infection, their effects are yet to be optimized and the emergence of NRTI-resistant HBV variants is an issue because of the requirement for lifelong treatment. The development of agents that more profoundly suppress wild-type and drug-resistant HBVs, and that have a long-acting effect, are crucial to improve patient outcomes. METHODS: Herein, we synthesized a novel long-acting 4'-modified NRTI termed E-CFCP. We tested its anti-HBV activity in vitro, before evaluating its anti-HBV activity in HBV-infected human-liver-chimeric mice (PXB-mice). E-CFCP's long-acting features and E-CFCP-triphosphate's interactions with the HBV reverse transcriptase (HBV-RT) were examined. RESULTS: E-CFCP potently blocked HBVWTD1 production (IC50qPCR_cell=1.8 nM) in HepG2.2.15 cells and HBVWTC2 (IC50SB_cell=0.7 nM), entecavir (ETV)-resistant HBVETV-RL180M/S202G/M204V (IC50SB_cell=77.5 nM), and adefovir-resistant HBVADV-RA181T/N236T production (IC50SB_cell=14.1 nM) in Huh7 cells. E-CFCP profoundly inhibited intracellular HBV DNA production to below the detection limit, but ETV and tenofovir alafenamide (TAF) failed to do so. E-CFCP also showed less toxicity than ETV and TAF. E-CFCP better penetrated hepatocytes and was better tri-phosphorylated; E-CFCP-triphosphate persisted intracellularly for longer than ETV-triphosphate. Once-daily peroral E-CFCP administration over 2 weeks (0.02~0.2 mg/kg/day) reduced HBVWTC2-viremia by 2-3 logs in PXB-mice without significant toxicities and the reduction persisted over 1-3 weeks following treatment cessation, suggesting once-weekly dosing capabilities. E-CFCP also reduced HBVETV-RL180M/S202G/M204V-viremia by 2 logs over 2 weeks, while ETV completely failed to reduce HBVETV-RL180M/S202G/M204V-viremia. E-CFCP's 4'-cyano and fluorine interact with both HBVWT-RT and HBVETV-RL180M/S202G-M204 -RT via Van der Waals and polar forces, being important for E-CFCP-triphosphate's interactions and anti-HBV potency. CONCLUSION: E-CFCP represents the first reported potential long-acting NRTI with potent activity against wild-type and treatment-resistant HBV. LAY SUMMARY: Although there are currently effective treatment options for HBV, treatment-resistant variants and the need for lifelong therapy pose a significant challenge. Therefore, the development of new treatment options is crucial to improve outcomes and quality of life. Herein, we report preclinical evidence showing that the anti-HBV agent, E-CFCP, has potent activity against wild-type and treatment-resistant variants. In addition, once-weekly oral dosing may be possible, which is preferrable to the current daily dosing regimens.


Asunto(s)
Desarrollo de Medicamentos/métodos , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Hepatitis B , Hepatitis B , Inhibidores de la Transcriptasa Inversa/farmacología , Animales , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Esquema de Medicación , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos , Ratones , ADN Polimerasa Dirigida por ARN/metabolismo , Tiempo
5.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801863

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Like other herpesviruses, it has latent and lytic repertoires. However, there is evidence that some lytic genes can be directly activated by certain cellular factors. Cells undergoing endoplasmic reticulum stress express spliced X-box binding protein 1 (XBP-1s). XBP-1s is also present in large amounts in germinal center B cells. XBP-1s can activate the KSHV replication and transcription activator (RTA) and lytic replication. It can also directly activate KSHV-encoded viral interleukin-6 (vIL-6) and, thus, contribute to the pathogenesis of KSHV MCD. KSHV thymidine kinase (TK), the ORF21 gene product, can enhance the production of dTTP and is important for lytic replication. It can also phosphorylate zidovudine and ganciclovir to toxic moieties, enabling treatment of KSHV-MCD with these drugs. We show here that XBP-1s can directly activate ORF21 and that this activation is mediated primarily through two XBP-response elements (XRE) on the ORF21 promoter region. Deletion or mutation of these elements eliminated XBP-1s-induced upregulation of the promoter, and chromatin immunoprecipitation studies provide evidence that XBP-1s can bind to both XREs. Exposure of PEL cells to a chemical inducer of XBP-1s can induce ORF21 within 4 hours, and ORF21 expression in the lymph nodes of patients with KSHV-MCD is predominantly found in cells with XBP-1. Thus, XBP-1s may directly upregulate KSHV ORF21 and, thus, contribute to the pathogenesis of KSHV-MCD and the activity of zidovudine and valganciclovir in this disease.IMPORTANCE Spliced X-box binding protein 1 (XBP-1s), part of the unfolded protein response and expressed in developing germinal center B cells, can induce Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication and directly activate viral interleukin-6 (vIL-6). We show here that XBP-1s can also directly activate KSHV ORF21, a lytic gene. ORF21 encodes KSHV thymidine kinase (TK), which increases the pool of dTTP for viral replication and enhances lytic replication. Direct activation of ORF21 by XBP-1s can enhance viral replication in germinal center B cells and contribute to the pathogenesis of KSHV multicentric Castleman disease (MCD). KSHV-MCD is characterized by systemic inflammation caused, in part, by lytic replication and overproduction of KSHV vIL-6 in XBP-1s-expressing lymph node plasmablasts. KSHV thymidine kinase can phosphorylate zidovudine and ganciclovir to toxic moieties, and direct activation of ORF21 by XBP-1s may also help explain the effectiveness of zidovudine and valganciclovir in the treatment of KSHV-MCD.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Timidina Quinasa/genética , Proteínas Virales/genética , Proteína 1 de Unión a la X-Box/genética , Enfermedad de Castleman , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Mutación , Regiones Promotoras Genéticas , Sarcoma de Kaposi/virología , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas Virales/metabolismo , Replicación Viral
6.
PLoS Pathog ; 13(9): e1006628, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28922425

RESUMEN

Primary effusion lymphoma (PEL) is an aggressive B-cell lymphoma with poor prognosis caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Previous studies have revealed that HIF-1α, which mediates much of the cellular response to hypoxia, plays an important role in life cycle of KSHV. KSHV infection promotes HIF-1α activity, and several KSHV genes are in turn activated by HIF-1α. In this study, we investigated the effects of knocking down HIF-1α in PELs. We observed that HIF-1α knockdown in each of two PEL lines leads to a reduction in both aerobic and anaerobic glycolysis as well as lipid biogenesis, indicating that HIF-1α is necessary for maintaining a metabolic state optimal for growth of PEL. We also found that HIF-1α suppression leads to a substantial reduction in activation of lytic KSHV genes, not only in hypoxia but also in normoxia. Moreover, HIF-1α knockdown led to a decrease in the expression of various KSHV latent genes, including LANA, vCyclin, kaposin, and miRNAs, under both normoxic and hypoxic conditions. These observations provide evidence that HIF-1α plays an important role in PEL even in normoxia. Consistent with these findings, we observed a significant inhibition of growth of PEL in normoxia upon HIF-1α suppression achieved by either HIF-1α knockdown or treatment with PX-478, a small molecule inhibitor of HIF-1α. These results offer further evidence that HIF-1α plays a critical role in the pathogenesis of PEL, and that inhibition of HIF-1α can be a potential therapeutic strategy in this disease.


Asunto(s)
Antígenos Virales/genética , Regulación Viral de la Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfoma de Efusión Primaria/virología , Sarcoma de Kaposi/virología , Antígenos Virales/inmunología , Hipoxia de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Linfoma de Efusión Primaria/tratamiento farmacológico , MicroARNs/metabolismo , Compuestos de Mostaza/farmacología , Fenilpropionatos/farmacología
7.
PLoS Pathog ; 13(1): e1006143, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28046107

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases.


Asunto(s)
Hipoxia de la Célula/genética , Regulación de la Expresión Génica/genética , Herpesvirus Humano 8/crecimiento & desarrollo , MicroARNs/genética , Sarcoma de Kaposi/genética , Secuencia de Bases , Línea Celular Tumoral , Biología Computacional , Células Endoteliales/patología , Células Endoteliales/virología , Herpesvirus Humano 8/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/biosíntesis , Sarcoma de Kaposi/virología , Análisis de Secuencia de ARN
8.
Med Teach ; 40(9): 892-895, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30033788

RESUMEN

BACKGROUND: Failure to translate best evidence into practice often generates inappropriate, unsafe, and costly healthcare. The continuing professional development (CPD) of physicians and other health professionals represents a widely underutilized strategy to improve both clinician performance and healthcare quality and safety. The evidence: Despite the clear evidence of the potential impact of CPD based in learning theory and science, some CPD providers, health systems, and clinicians themselves implement less-than-effective effective learning strategies. This phenomenon is the product of several factors: within health systems, a lack of recognition of the importance of ongoing, system-linked professional education; among CPD providers, an adherence to old but easy-to-deliver "one-and-done" methods CPD; and even among clinicians themselves, choosing less engaging learning activities, uninformed by objective performance data. RECOMMENDATION: Suggestions to improve this lack of translation of best evidence into practice fall into four groups. Academic medical institutions, employers and educators need to embrace principles and practices of self-directed learning; health systems must share responsibility for the physician learning and the performance data and feedback on which such learning is best-based; physician specialty societies and licensing boards must undertake meaningful re-licensure and re-certification processes; and CPD planners must seek out partnerships with health system leadership and quality improvement managers as they create engaging, integrated, and impactful CPD activities.


Asunto(s)
Educación Médica Continua/organización & administración , Práctica Clínica Basada en la Evidencia/organización & administración , Integración de Sistemas , Competencia Clínica/normas , Educación Médica Continua/normas , Práctica Clínica Basada en la Evidencia/normas , Humanos , Difusión de la Información , Seguridad del Paciente , Mejoramiento de la Calidad/organización & administración
9.
Biochem Biophys Res Commun ; 490(2): 480-485, 2017 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-28624448

RESUMEN

Human lysyl oxidase (LOX) is a hypoxia-responsive gene whose product catalyzes collagen crosslinking and is thought to be important in cancer metastasis and osteoarthritis. We previously demonstrated that LOX was upregulated by hypoxia inducible factor 2 (HIF-2) more strongly than hypoxia inducible 1 (HIF-1). Here, we further investigated the response of the LOX gene and LOX promoter to HIFs. LOX mRNA, measured by real time reverse transcriptase-PCR, was strongly up-regulated (almost 40-fold), by transfection of HEK-293T cells with a plasmid encoding the HIF-2α subunit of HIF-2, but only three-fold by a plasmid encoding HIF-1α. LOX protein was detectable by Western blot of cells transfected with HIF-2α, but not with HIF-1α. Analysis of a 1487 bp promoter sequence upstream of the human LOX gene revealed 9 potential hypoxia response elements (HREs). Promoter truncation allowed the mapping of two previously unidentified functional HREs, called here HRE8 and HRE7; -455 to -451 and -382 to -386 bp, respectively, upstream of the start codon for LOX. Removal or mutation of these HREs led to a substantial reduction in both HIF-1α and HIF-2α responsiveness. Also, expression of LOX was significantly inhibited by a small molecule specific HIF-2 inhibitor. In conclusion, LOX is highly responsive to HIF-2α and this is largely mediated by two previously unidentified HREs. These observations enhance our understanding of the regulation of this important gene involved in cancer and osteoarthritis, and suggest that these conditions may be targeted by HIF-2 inhibitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Elementos de Respuesta , Células HEK293 , Humanos , Regiones Promotoras Genéticas , ARN Mensajero/genética
10.
J Virol ; 90(1): 368-78, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491160

RESUMEN

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and a subset of multicentric Castleman disease (MCD). The KSHV life cycle has two principal gene repertoires, latent and lytic. KSHV viral interleukin-6 (vIL-6), an analog of human IL-6, is usually lytic; production of vIL-6 by involved plasmablasts is a central feature of KSHV-MCD. vIL-6 also plays a role in PEL and KS. We show that a number of plasmablasts from lymph nodes of patients with KSHV-MCD express vIL-6 but not ORF45, a KSHV lytic gene. We further show that vIL-6 is directly induced by the spliced (active) X-box binding protein-1 (XBP-1s), a transcription factor activated by endoplasmic reticulum (ER) stress and differentiation of B cells in lymph nodes. The promoter region of vIL-6 contains several potential XBP-response elements (XREs), and two of these elements in particular mediate the effect of XBP-1s. Mutation of these elements abrogates the response to XBP-1s but not to the KSHV replication and transcription activator (RTA). Also, XBP-1s binds to the vIL-6 promoter in the region of these XREs. Exposure of PEL cells to a chemical inducer of XBP-1s can induce vIL-6. Patient-derived PEL tumor cells that produce vIL-6 frequently coexpress XBP-1, and immunofluorescence staining of involved KSHV-MCD lymph nodes reveals that most plasmablasts expressing vIL-6 also coexpress XBP-1. These results provide evidence that XBP-1s is a direct activator of KSHV vIL-6 and that this is an important step in the pathogenesis of KSHV-MCD and PEL. IMPORTANCE: Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (KSHV-MCD) is characterized by severe inflammatory symptoms caused by an excess of cytokines, particularly KSHV-encoded viral interleukin-6 (vIL-6) produced by lymph node plasmablasts. vIL-6 is usually a lytic gene. We show that a number of KSHV-MCD lymph node plasmablasts express vIL-6 but do not have full lytic KSHV replication. Differentiating lymph node B cells express spliced (active) X-box binding protein-1 (XBP-1s). We show that XBP-1s binds to the promoter of vIL-6 and can directly induce production of vIL-6 through X-box protein response elements on the vIL-6 promoter region. We further show that chemical inducers of XBP-1s can upregulate production of vIL-6. Finally, we show that most vIL-6-producing plasmablasts from lymph nodes of KSHV-MCD patients coexpress XBP-1s. These results demonstrate that XBP-1s can directly induce vIL-6 and provide evidence that this is a key step in the pathogenesis of KSHV-MCD and other KSHV-induced diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Interacciones Huésped-Patógeno , Interleucina-6/biosíntesis , Factores de Transcripción/metabolismo , Proteínas Virales/biosíntesis , Línea Celular , Análisis Mutacional de ADN , Herpesvirus Humano 8/fisiología , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción del Factor Regulador X , Proteína 1 de Unión a la X-Box
11.
PLoS Pathog ; 11(7): e1005064, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26218605

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1 beta (IL-1ß) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1ß production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.


Asunto(s)
Antígenos Virales/metabolismo , Caspasa 1/metabolismo , Herpesvirus Humano 8/genética , Linfoma de Efusión Primaria/virología , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/virología , Latencia del Virus/fisiología , Apoptosis/genética , Caspasa 3/metabolismo , Herpesvirus Humano 8/metabolismo , Interacciones Huésped-Parásitos/fisiología , Humanos
12.
J Neuroinflammation ; 13: 19, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26810976

RESUMEN

BACKGROUND: The basis for air pollution-associated neurodegenerative changes in humans is being studied in rodent models. We and others find that the ultrafine particulate matter (PM) derived from vehicular exhaust can induce synaptic dysfunction and inflammatory responses in vivo and in vitro. In particular, a nano-sized subfraction of particulate matter (nPM, PM0.2) from a local urban traffic corridor can induce glial TNFα production in mixed glia (astrocytes and microglia) derived from neonatal rat cerebral cortex. METHODS: Here, we examine the role of TNFα in neurite dysfunctions induced by nPM in aqueous suspensions at 12 µg/ml. First, we show that the proximal brain gateway to nPM, the olfactory neuroepithelium (OE), rapidly responds to nPM ex vivo, with induction of TNFα, activation of macrophages, and dendritic shrinkage. Cell interactions were further analyzed with mixed glia and neurons from neonatal rat cerebral cortex. RESULTS: Microglia contributed more than astrocytes to TNFα induction by nPM. We then showed that the threefold higher TNFα in conditioned media (nPM-CM) from mixed glia was responsible for the inhibition of neurite outgrowth by small interfering RNA (siRNA) TNFα knockdown and by TNFα immunoneutralization. Despite lack of TNFR1 induction by nPM in the OE, experimental blocking of TNFR1 by TNFα receptor blockers restored total neurite length. CONCLUSIONS: These findings implicate microglia-derived TNFα as a mediator of nPM in air pollution-associated neurodegenerative changes which alter synaptic functions and neuronal growth.


Asunto(s)
Neuritas/efectos de los fármacos , Neuroglía/citología , Material Particulado/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Emisiones de Vehículos , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Citocinas/genética , Citocinas/metabolismo , Epitelio/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Tubulina (Proteína)/metabolismo , Factor de Necrosis Tumoral alfa/genética
13.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26791617

RESUMEN

Neurofibrillary tangles (NFT) and ß-amyloid plaques are the neurological hallmarks of both Alzheimer's disease and an unusual paralytic illness suffered by Chamorro villagers on the Pacific island of Guam. Many Chamorros with the disease suffer dementia, and in some villages one-quarter of the adults perished from the disease. Like Alzheimer's, the causal factors of Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) are poorly understood. In replicated experiments, we found that chronic dietary exposure to a cyanobacterial toxin present in the traditional Chamorro diet, ß-N-methylamino-l-alanine (BMAA), triggers the formation of both NFT and ß-amyloid deposits similar in structure and density to those found in brain tissues of Chamorros who died with ALS/PDC. Vervets (Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed NFT and sparse ß-amyloid deposits in the brain. Co-administration of the dietary amino acid l-serine with l-BMAA significantly reduced the density of NFT. These findings indicate that while chronic exposure to the environmental toxin BMAA can trigger neurodegeneration in vulnerable individuals, increasing the amount of l-serine in the diet can reduce the risk.


Asunto(s)
Aminoácidos Diaminos/toxicidad , Péptidos beta-Amiloides/metabolismo , Esclerosis Amiotrófica Lateral/inducido químicamente , Encéfalo/efectos de los fármacos , Ovillos Neurofibrilares/patología , Aminoácidos Diaminos/química , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Chlorocebus aethiops , Toxinas de Cianobacterias , Contaminación de Alimentos , Guam , Humanos , Raíces de Plantas/microbiología , Grupos de Población , Serina/farmacología
14.
FASEB J ; 28(1): 106-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097312

RESUMEN

A 27-aa peptide (P27) was previously shown to decrease the accumulation of human immunodeficiency virus type 1 (HIV-1) in the supernatant of chronically infected cells; however, the mechanism was not understood. Here, we show that P27 prevents virus accumulation by inducing macropinocytosis (MPC). Treatment of HIV-1- and human T-cell lymphotropic virus type 1 (HTLV-1)-infected cells with 2-10 µM P27 caused cell membrane ruffling and uptake of virus and polymerized forms of the peptide into large vacuoles. As demonstrated by electron microscopy, activation of MPC did not require virus or cells infected with virus, as P27 initiated its own uptake in the absence of virus. Inhibitors of MPC, Cytochalasin D and amiloride, decreased P27-mediated uptake of soluble dextran and inhibited P27-induced virus uptake by >60%, which provides further evidence that P27 induces MPC. In CD4(+) HeLa cells, HIV-1 infection was enhanced by P27 up to 4-fold, and P27 increased infection at concentrations as low as 20 nM. The 5-aa C-terminal domain of P27 was necessary for virus uptake and may be responsible for the polymerization of P27 into fibrils. These forms of P27 may play a key role in triggering MPC, making this peptide a useful tool for studying virus uptake and infection, as well as MPC of other macromolecules.


Asunto(s)
Endocitosis/efectos de los fármacos , Péptidos/farmacología , Pinocitosis/efectos de los fármacos , Amilorida/farmacología , Línea Celular , Citocalasina D/farmacología , Humanos , Retroviridae/fisiología
15.
Gynecol Oncol ; 138(2): 372-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26050922

RESUMEN

OBJECTIVE: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS: To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS: Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS: Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Modelos Animales de Enfermedad , Neoplasias Ováricas/patología , Animales , Procesos de Crecimiento Celular , Línea Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Clasificación del Tumor , Neoplasias Ováricas/metabolismo , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Proteínas WT1/biosíntesis
16.
Antimicrob Agents Chemother ; 58(7): 3679-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752271

RESUMEN

In the present study, GRL008, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), and darunavir (DRV), both of which contain a P2-bis-tetrahydrofuranyl urethane (bis-THF) moiety, were found to exert potent antiviral activity (50% effective concentrations [EC50s], 0.029 and 0.002 µM, respectively) against a multidrug-resistant clinical isolate of HIV-1 (HIVA02) compared to ritonavir (RTV; EC50, >1.0 µM) and tipranavir (TPV; EC50, 0.364 µM). Additionally, GRL008 showed potent antiviral activity against an HIV-1 variant selected in the presence of DRV over 20 passages (HIVDRV(R)P20), with a 2.6-fold increase in its EC50 (0.097 µM) compared to its corresponding EC50 (0.038 µM) against wild-type HIV-1NL4-3 (HIVWT). Based on X-ray crystallographic analysis, both GRL008 and DRV showed strong hydrogen bonds (H-bonds) with the backbone-amide nitrogen/carbonyl oxygen atoms of conserved active-site amino acids G27, D29, D30, and D30' of HIVA02 protease (PRA02) and wild-type PR in their corresponding crystal structures, while TPV lacked H-bonds with G27 and D30' due to an absence of polar groups. The P2' thiazolyl moiety of RTV showed two conformations in the crystal structure of the PRA02-RTV complex, one of which showed loss of contacts in the S2' binding pocket of PRA02, supporting RTV's compromised antiviral activity (EC50, >1 µM). Thus, the conserved H-bonding network of P2-bis-THF-containing GRL008 with the backbone of G27, D29, D30, and D30' most likely contributes to its persistently greater antiviral activity against HIVWT, HIVA02, and HIVDRV(R)P20.


Asunto(s)
Carbamatos/farmacología , Dominio Catalítico/efectos de los fármacos , Farmacorresistencia Viral Múltiple/efectos de los fármacos , Furanos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Sulfonamidas/farmacología , Cristalización , Darunavir , Proteasa del VIH , Humanos , Enlace de Hidrógeno , Conformación Molecular , Datos de Secuencia Molecular , Pliegue de Proteína , Piridinas/farmacología , Pironas/farmacología , Difracción de Rayos X
17.
Am J Obstet Gynecol ; 211(3): 215-215.e1, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24881824

RESUMEN

Despite efforts by health professional organizations to promote efforts in quality improvement, patient safety, and cost reduction, the issue remains that US medical schools and teaching hospitals do not have an adequate supply of skilled faculties to lead these efforts. Recognizing this need, an expert, multidisciplinary panel was convened by the American Association of Medical Colleges in 2012 to develop a systematic strategy to build a critical mass of academic health center faculties to lead and implement education in those three areas. In the last year, the American Association of Medical Colleges has launched a national institution-based initiative to train faculty in all clinical specialties, which includes those in obstetrics-gynecology. This comprehensive program consists of interactive experiential learning workshops, web-based resources, a national community of learners, implementation of educational initiatives, and dissemination of outcomes. Those faculties will be invaluable in leading and disseminating educational programs that embed quality improvement and patient safety across the continuum of women's healthcare to all faculty members and residents.


Asunto(s)
Educación Médica , Seguridad del Paciente , Mejoramiento de la Calidad , Docentes , Humanos
18.
Toxins (Basel) ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251257

RESUMEN

Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan. Here, we describe TAR DNA-binding protein 43 (TDP-43) proteinopathy and Alzheimer's disease (AD) neuropathological changes in a beached harbor porpoise (Phocoena phocoena) that was exposed to a toxin produced by cyanobacteria called ß-N-methylamino-L-alanine (BMAA). We found pathogenic TDP-43 cytoplasmic inclusions in neurons throughout the cerebral cortex, midbrain and brainstem. P62/sequestosome-1, responsible for the autophagy of misfolded proteins, was observed in the amygdala, hippocampus and frontal cortex. Genes implicated in AD and TDP-43 neuropathology such as APP and TARDBP were expressed in the brain. AD neuropathological changes such as amyloid-ß plaques, neurofibrillary tangles, granulovacuolar degeneration and Hirano bodies were present in the hippocampus. These findings further support the development of progressive neurodegenerative disease in cetaceans and a potential causative link to cyanobacterial toxins. Climate change, nutrient pollution and industrial waste are increasing the frequency of harmful cyanobacterial blooms. Cyanotoxins like BMAA that are associated with neurodegenerative disease pose an increasing public health risk.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Phocoena , Animales , Enfermedad de Alzheimer/inducido químicamente , Encéfalo , Proteínas de Unión al ADN
19.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237588

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Asunto(s)
Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Cerebral/metabolismo , Núcleo Solitario/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
20.
Front Neurosci ; 18: 1286924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486969

RESUMEN

Introduction: Severity and distribution of aggregated tau and neurofibrillary tangles (NFT) are strongly correlated with the clinical presentation of Alzheimer's disease (AD). Clearance of aggregated tau could decrease the rate of NFT formation and delay AD onset. Recent studies implicate corpora amylacea (CA) as a regulator of onset or accumulation of tau pathology. Normally, CA clear brain waste products by amassing cellular debris, which are then extruded into the cerebrospinal fluid to be phagocytosed. The proper functioning of CA may slow progression of AD-associated NFT pathology, and this relationship may be influenced by amount and distribution of phospho-tau (pTau) produced, age, sex, and genetic risk. Objective: The goal of this study was to determine if CA size and number are associated with hippocampal location and local pTau severity while accounting for variations in age, sex, and genetic risk. Methods: Postmortem brain hippocampal tissue sections from 40 AD and 38 unaffected donors were immunohistochemically stained with AT8 (pTau) and counter stained with periodic acid Schiff (PAS). Stained sections of the CA1 and CA3 regions of the hippocampus were analyzed. The percent area occupied (%AO) of CA, pTau, and NFT was calculated. Pairwise comparisons and regression modeling were used to analyze the influence of age, pTau %AO, and genetic risk on %AO by CA in each region, separately in donors with AD and unaffected donors. Results: CA %AO was significantly higher in the CA3 region compared to CA1 in both groups. A significant negative correlation of CA %AO with both pTau %AO and neurofibrillary tangle %AO in the CA3 region of AD brain donors was found. Regression analysis in the CA3 region revealed a significant negative association between CA with both pTau and age. Conclusion: We found an increase of CA in the CA3 region, compared to CA1 region, in AD and unaffected donors. This may suggest that the CA3 region is a hub for waste removal. Additionally, the negative correlation between %AO by CA and NFT in the CA3 region of the hippocampus in donors with AD suggests CA could play a role in AD pathologic progression by influencing tau clearance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA