Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(1-2): 161-76, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594179

RESUMEN

Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wld(s) protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration.


Asunto(s)
Axones/patología , Sistema de Señalización de MAP Quinasas , Adenosina Trifosfato/metabolismo , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Muerte Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
2.
Cell ; 160(4): 745-758, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25662011

RESUMEN

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin's ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Asunto(s)
Acetilcoenzima A/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Paniculitis/metabolismo , Tejido Adiposo Blanco/química , Adolescente , Animales , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Glucosa/metabolismo , Humanos , Hiperglucemia , Interleucina-6/análisis , Lipólisis , Masculino , Ratones , Obesidad/metabolismo , Ratas Sprague-Dawley
3.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334822

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Asunto(s)
Tejido Adiposo/fisiología , Comunicación Autocrina/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Transducción de Señal/genética , Adipocitos/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/fisiopatología , Animales , Sistema Endocrino/metabolismo , Metabolismo Energético/genética , Retroalimentación Fisiológica/fisiología , Factores de Crecimiento de Fibroblastos/sangre , Hepatocitos/metabolismo , Resistencia a la Insulina/genética , Hígado/metabolismo , MAP Quinasa Quinasa 4/deficiencia , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones
4.
Proc Natl Acad Sci U S A ; 120(4): e2218373120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656864

RESUMEN

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6ß4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Sistema de Señalización de MAP Quinasas , Humanos , Femenino , Neoplasias de la Mama/patología , Transducción de Señal , Transformación Celular Neoplásica/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Línea Celular Tumoral
5.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282921

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Asunto(s)
Síndrome Metabólico , PPAR alfa , Animales , Ratones , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Ratones Noqueados , Fosforilación , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MAP Quinasa Quinasa 4/metabolismo
6.
Cell ; 136(2): 249-60, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19167327

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) signaling pathway has been implicated in the development of tumor necrosis factor (TNF)-dependent hepatitis. JNK may play a critical role in hepatocytes during TNF-stimulated cell death in vivo. To test this hypothesis, we examined the phenotype of mice with compound disruption of the Jnk1 and Jnk2 genes. Mice with loss of JNK1/2 expression in hepatocytes exhibited no defects in the development of hepatitis compared with control mice, whereas mice with loss of JNK1/2 in the hematopoietic compartment exhibited a profound defect in hepatitis that was associated with markedly reduced expression of TNF-alpha. These data indicate that JNK is required for TNF-alpha expression but not for TNF-alpha-stimulated death of hepatocytes. Indeed, TNF-alpha induced similar hepatic damage in both mice with hepatocyte-specific JNK1/2 deficiency and control mice. These observations confirm a role for JNK in the development of hepatitis but identify hematopoietic cells as the site of the essential function of JNK.


Asunto(s)
Hepatitis/metabolismo , Hepatocitos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética
8.
PLoS Genet ; 17(12): e1009711, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962918

RESUMEN

Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people. It primarily is caused by mutations in the transmembrane proteins polycystin-1 (Pkd1) and polycystin-2 (Pkd2). The most proximal effects of Pkd mutations leading to cyst formation are not known, but pro-proliferative signaling must be involved for the tubule epithelial cells to increase in number over time. The c-Jun N-terminal kinase (JNK) pathway promotes proliferation and is activated in acute and chronic kidney diseases. Using a mouse model of cystic kidney disease caused by Pkd2 loss, we observe JNK activation in cystic kidneys and observe increased nuclear phospho c-Jun in cystic epithelium. Genetic removal of Jnk1 and Jnk2 suppresses the nuclear accumulation of phospho c-Jun, reduces proliferation and reduces the severity of cystic disease. While Jnk1 and Jnk2 are thought to have largely overlapping functions, we find that Jnk1 loss is nearly as effective as the double loss of Jnk1 and Jnk2. Jnk pathway inhibitors are in development for neurodegeneration, cancer, and fibrotic diseases. Our work suggests that the JNK pathway should be explored as a therapeutic target for ADPKD.


Asunto(s)
Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Riñón/metabolismo , Riñón/patología , Sistema de Señalización de MAP Quinasas/genética , Mutación/genética , Riñón Poliquístico Autosómico Dominante/patología , Transducción de Señal/genética
9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33798093

RESUMEN

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades de los Conductos Biliares/etiología , Enfermedades de los Conductos Biliares/metabolismo , Caspasa 8/metabolismo , Quistes/etiología , Quistes/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis , Biopsia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Inmunofenotipificación , Hepatopatías/etiología , Hepatopatías/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Necroptosis
10.
Proc Natl Acad Sci U S A ; 117(6): 2751-2760, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31980524

RESUMEN

Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor α. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism.


Asunto(s)
Tejido Adiposo/inmunología , Interleucina-6/inmunología , Obesidad/inmunología , Proteína ADAM10/genética , Proteína ADAM10/inmunología , Proteína ADAM17/genética , Proteína ADAM17/inmunología , Adipocitos/inmunología , Animales , Femenino , Humanos , Interleucina-6/genética , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/inmunología , Células Mieloides/inmunología , Obesidad/genética , Especificidad de la Especie
11.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601222

RESUMEN

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colangiocarcinoma/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/fisiopatología , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , PPAR alfa/genética , PPAR alfa/metabolismo
12.
BMC Biol ; 20(1): 115, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581583

RESUMEN

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Asunto(s)
Neuronas , Transducción de Señal , Células Cultivadas , Neuronas/metabolismo , Fosforilación , Transducción de Señal/fisiología
13.
Am J Physiol Heart Circ Physiol ; 323(3): H513-H522, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35867711

RESUMEN

Mixed lineage kinase 3 (MLK3) modulates blood pressure and left ventricular function, but the mechanisms governing these effects remain unclear. In the current study, we therefore investigated the role of the MLK3 Cdc42/Rac interactive binding (CRIB) domain in cardiovascular physiology. We examined baseline and left ventricular pressure overload responses in a MLK3 CRIB mutant (MLK3C/C) mouse, which harbors point mutations in the CRIB domain to disrupt MLK3 activation by Cdc42. Male and female MLK3C/C mice displayed increased invasively measured blood pressure compared with wild-type (MLK3+/+) littermate controls. MLK3C/C mice of both sexes also developed left and right ventricular hypertrophy but normal baseline LV function by echocardiography and invasive hemodynamics. In LV tissue from MLK3C/C mice, map3k11 mRNA, which encodes MLK3, and MLK3 protein were reduced by 74 ± 6% and 73 ± 7%, respectively. After 1-wk LV pressure overload with 25-gauge transaortic constriction (TAC), male MLK3C/C mice developed no differences in LV hypertrophy but displayed reduction in the LV systolic indices ejection fraction and dP/dt normalized to instantaneous pressure. JNK activation was also reduced in LV tissue of MLK3C/C TAC mice. TAC induced MLK3 translocation from cytosolic fraction to membrane fraction in LV tissue from MLK3+/+ but not MLK3C/C mice. These findings identify a role of the MLK3 CRIB domain in MLK3 regulation of basal blood pressure and cardiac morphology, and in promoting the compensatory LV response to pressure overload.NEW & NOTEWORTHY Here, we identified that the presence of two discrete point mutations within the Cdc42/Rac interaction and binding domain of the protein MLK3 recapitulates the effects of whole body MLK3 deletion on blood pressure, cardiac hypertrophy, and left ventricular compensation after pressure overload. These findings implicate the CRIB domain, and thus MLK3 activation by this domain, as critical for maintenance of cardiovascular homeostasis.


Asunto(s)
Cardiomegalia , Función Ventricular Izquierda , Animales , Presión Sanguínea , Cardiomegalia/metabolismo , Femenino , Hipertrofia Ventricular Izquierda , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos , Remodelación Ventricular/fisiología , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
14.
Am J Pathol ; 191(5): 817-828, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607044

RESUMEN

Activation of the JUN amino-terminal kinase (JNK) pathway is prominent in most forms of acute and progressive tubulointerstitial damage, including acute renal ischemia/reperfusion injury (IRI). Two forms of JNK, JNK1 and JNK2, are expressed in the kidney. Systemic administration of pan-JNK inhibitors suppresses renal IRI; however, the contribution of JNK1 versus JNK2, and the specific role of JNK activation in the proximal tubule in IRI, remains unknown. These questions were addressed in rat and mouse models of acute bilateral renal IRI. Administration of the JNK inhibitor, CC-930, substantially reduced the severity of renal failure, tubular damage, and inflammation at 24 hours in a rat IRI model. Additionally, Jnk1-/- mice, but not Jnk2-/- mice, were shown to be significantly protected against acute renal failure, tubular damage, and inflammation in the IRI model. Furthermore, mice with conditional Jnk1 deletion in the proximal tubule also showed considerable protection from IRI-induced renal failure, tubular damage, and inflammation. Finally, primary cultures of Jnk1-/-, but not Jnk2-/-, tubular epithelial cells were protected from oxidant-induced cell death, in association with preventing phosphorylation of proteins (receptor interacting serine/threonine kinase 3 and mixed lineage kinase domain-like pseudokinase) in the necroptosis pathway. In conclusion, JNK1, but not JNK2, plays a specific role in IRI-induced cell death in the proximal tubule, leading to acute renal failure.


Asunto(s)
Lesión Renal Aguda/patología , Inflamación/patología , Sistema de Señalización de MAP Quinasas , Daño por Reperfusión/patología , Animales , Muerte Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Riñón/patología , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Ratas , Ratas Sprague-Dawley
15.
Nature ; 540(7634): 588-592, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27974798

RESUMEN

Metastasis is the leading cause of cancer-related deaths; metastatic lesions develop from disseminated cancer cells (DCCs) that can remain dormant. Metastasis-initiating cells are thought to originate from a subpopulation present in progressed, invasive tumours. However, DCCs detected in patients before the manifestation of breast-cancer metastasis contain fewer genetic abnormalities than primary tumours or than DCCs from patients with metastases. These findings, and those in pancreatic cancer and melanoma models, indicate that dissemination might occur during the early stages of tumour evolution. However, the mechanisms that might allow early disseminated cancer cells (eDCCs) to complete all steps of metastasis are unknown. Here we show that, in early lesions in mice and before any apparent primary tumour masses are detected, there is a sub-population of Her2+p-p38lop-Atf2loTwist1hiE-cadlo early cancer cells that is invasive and can spread to target organs. Intra-vital imaging and organoid studies of early lesions showed that Her2+ eDCC precursors invaded locally, intravasated and lodged in target organs. Her2+ eDCCs activated a Wnt-dependent epithelial-mesenchymal transition (EMT)-like dissemination program but without complete loss of the epithelial phenotype, which was reversed by Her2 or Wnt inhibition. Notably, although the majority of eDCCs were Twist1hiE-cadlo and dormant, they eventually initiated metastasis. Our work identifies a mechanism for early dissemination in which Her2 aberrantly activates a program similar to mammary ductal branching that generates eDCCs that are capable of forming metastasis after a dormancy phase.

16.
J Immunol ; 202(3): 647-651, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30610162

RESUMEN

Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2/genética , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Inflamación/inmunología , Receptor fas/genética , Animales , Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/virología , Regulación de la Expresión Génica , Homeostasis , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante de Piel
17.
Genes Dev ; 27(21): 2345-55, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186979

RESUMEN

The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Yoduro Peroxidasa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Obesidad/fisiopatología , Animales , Metabolismo Energético/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Ratones , Obesidad/genética , Adenohipófisis/metabolismo , Hormonas Tiroideas/metabolismo , Yodotironina Deyodinasa Tipo II
18.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502275

RESUMEN

Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo.


Asunto(s)
Citocinas/metabolismo , MAP Quinasa Quinasa 7/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Inflamación/metabolismo , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa 7/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones Endogámicos C57BL , Ratones Mutantes , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
19.
Mol Syst Biol ; 15(8): e8849, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31464373

RESUMEN

Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Obesidad/metabolismo , Fosfotirosina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Ratas , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
20.
J Neurosci ; 38(15): 3708-3728, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540552

RESUMEN

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Plasticidad Neuronal , Memoria Espacial , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Condicionamiento Clásico , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Mutación Puntual , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA