Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
New Phytol ; 237(1): 177-191, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36028981

RESUMEN

Global warming has profound impact on growth and development, and plants constantly adjust their internal circadian clock to cope with external environment. However, how clock-associated genes fine-tune thermoresponsive growth in plants is little understood. We found that loss-of-function mutation of REVEILLE5 (RVE5) reduces the expression of circadian gene EARLY FLOWERING 4 (ELF4) in Arabidopsis, and confers accelerated hypocotyl growth under warm-temperature conditions. Both RVE5 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) accumulate at warm temperatures and bind to the same EE cis-element presented on ELF4 promoter, but the transcriptional repression activity of RVE5 is weaker than that of CCA1. The binding of CCA1 to ELF4 promoter is enhanced in the rve5-2 mutant at warm temperatures, and overexpression of ELF4 in the rve5-2 mutant background suppresses the rve5-2 mutant phenotype at warm temperatures. Therefore, the transcriptional repressor RVE5 finetunes ELF4 expression via competing at a cis-element with the stronger transcriptional repressor CCA1 at warm temperatures. Such a competition-attenuation mechanism provides a balancing system for modulating the level of ELF4 and thermoresponsive hypocotyl growth under warm-temperature conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Hipocótilo , Relojes Circadianos/genética , Ritmo Circadiano/genética
2.
J Integr Plant Biol ; 64(7): 1310-1324, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35603836

RESUMEN

The circadian clock maintains the daily rhythms of plant growth and anticipates predictable ambient temperature cycles. The evening complex (EC), comprising EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRHYTHMO, plays an essential role in suppressing thermoresponsive hypocotyl growth by negatively regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) activity and its downstream targets in Arabidopsis thaliana. However, how EC activity is attenuated by warm temperatures remains unclear. Here, we demonstrate that warm temperature-induced REVEILLE 7 (RVE7) fine-tunes thermoresponsive growth in Arabidopsis by repressing ELF4 expression. RVE7 transcript and RVE7 protein levels increased in response to warm temperatures. Under warm temperature conditions, an rve7 loss-of-function mutant had shorter hypocotyls, while overexpressing RVE7 promoted hypocotyl elongation. PIF4 accumulation and downstream transcriptional effects were reduced in the rve7 mutant but enhanced in RVE7 overexpression plants under warm conditions. RVE7 associates with the Evening Element in the ELF4 promoter and directly represses its transcription. ELF4 is epistatic to RVE7, and overexpressing ELF4 suppressed the phenotype of the RVE7 overexpression line under warm temperature conditions. Together, our results identify RVE7 as an important regulator of thermoresponsive growth that functions (in part) by controlling ELF4 transcription, highlighting the importance of ELF4 for thermomorphogenesis in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/genética , Hipocótilo/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 101(6): 1397-1410, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31694066

RESUMEN

ELF3 and GI are two important components of the Arabidopsis circadian clock. They are not only essential for the oscillator function but are also pivotal in mediating light inputs to the oscillator. Lack of either results in a defective oscillator causing severely compromised output pathways, such as photoperiodic flowering and hypocotyl elongation. Although single loss of function mutants of ELF3 and GI have been well studied, their genetic interaction remains unclear. We generated an elf3 gi double mutant to study their genetic relationship in clock-controlled growth and phase transition phenotypes. We found that ELF3 and GI repress growth differentially during the night and the day, respectively. Circadian clock assays revealed that ELF3 and GI are essential that enable the oscillator to synchronize the endogenous cellular mechanisms to external environmental signals. In their absence, the circadian oscillator fails to synchronize to the light-dark cycles even under diurnal conditions. Consequently, clock-mediated photoperiod-responsive growth and development are completely lost in plants lacking both genes, suggesting that ELF3 and GI together convey photoperiod sensing to the central oscillator. Since ELF3 and GI are conserved across flowering plants and represent important breeding and domestication targets, our data highlight the possibility of developing photoperiod-insensitive crops by adjusting the allelic combination of these two key genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Relojes Circadianos/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Flores/fisiología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Fotoperiodo , Factores de Transcripción/fisiología
4.
J Integr Plant Biol ; 63(6): 1097-1103, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33963671

RESUMEN

Plants are capable of coordination of their growth and development with ambient temperatures. EARLY FLOWERING3 (ELF3), an essential component of the plant circadian clock, is also involved in ambient temperature sensing, as well as in inhibiting the expression and protein activity of the thermoresponsive regulator phytochrome interacting factor 4 (PIF4). The ELF3 activity is subjected to attenuation in response to warm temperature; however, how the protein level of ELF3 is regulated at warm temperature remains less understood. Here, we report that the E3 ligase XB3 ORTHOLOG 5 IN ARABIDOPSIS THALIANA, XBAT35, mediates ELF3 degradation. XBAT35 interacts with ELF3 and ubiquitinates ELF3. Loss-of-function mutation of XBAT35 increases the protein level of ELF3 and confers a short-hypocotyl phenotype under warm temperature conditions. Thus, our findings establish that XBAT35 mediates ELF3 degradation to lift the inhibition of ELF3 on PIF4 for promoting thermoresponsive hypocotyl growth in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Semin Cell Dev Biol ; 24(5): 422-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23558216

RESUMEN

Circadian clocks are ubiquitous mechanisms that provide an adaptive advantage by predicting subsequent environmental changes. In the model plant Arabidopsis thaliana (Arabidopsis), our understanding of the complex genetic network among clock components has considerably increased during these past years. Modeling has predicted the possibility of additional component to systematically and functionally complete the clock system. Mutagenesis screens have in the past been successfully employed to detect such novel components. With the advancement in sequencing technologies and improvements in statistical approaches, the extensive natural variation present in Arabidopsis accessions has emerged as a powerful alternative in functional gene discovery. In this review article, we review the previous efforts in mapping natural alleles affecting various clock parameters and will discuss further potentials of such natural-variation studies in physiological and ecological contexts.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas , Variación Genética , Alelos , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Mapeo Cromosómico , Luz , Sitios de Carácter Cuantitativo , Transducción de Señal
6.
BMC Plant Biol ; 15: 197, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26269119

RESUMEN

BACKGROUND: Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis. RESULTS: We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth. CONCLUSIONS: In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Factores de Transcripción/genética , Adaptación Fisiológica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fotoperiodo , Sitios de Carácter Cuantitativo , Factores de Transcripción/metabolismo
7.
Sci Bull (Beijing) ; 69(1): 59-71, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38044192

RESUMEN

Rice (Oryza sativa L.) production is threatened by global warming associated with extreme high temperatures, and rice heat sensitivity is differed when stress occurs between daytime and nighttime. However, the underlying molecular mechanism are largely unknown. We show here that two glycine-rich RNA binding proteins, OsGRP3 and OsGRP162, are required for thermotolerance in rice, especially at nighttime. The rhythmic expression of OsGRP3/OsGRP162 peaks at midnight, and at these coincident times, is increased by heat stress. This is largely dependent on the evening complex component OsELF3-2. We next found that the double mutant of OsGRP3/OsGRP162 is strikingly more sensitive to heat stress in terms of survival rate and seed setting rate when comparing to the wild-type plants. Interestingly, the defect in thermotolerance is more evident when heat stress occurred in nighttime than that in daytime. Upon heat stress, the double mutant of OsGRP3/OsGRP162 displays globally reduced expression of heat-stress responsive genes, and increases of mRNA alternative splicing dominated by exon-skipping. This study thus reveals the important role of OsGRP3/OsGRP162 in thermotolerance in rice, and unravels the mechanism on how OsGRP3/OsGRP162 regulate thermotolerance in a diurnal manner.


Asunto(s)
Oryza , Termotolerancia , Termotolerancia/genética , Oryza/genética , Empalme Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Unión al ARN/genética , Glicina/genética
8.
Plant J ; 67(1): 37-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21395889

RESUMEN

Circadian clocks regulate many molecular and physiological processes in Arabidopsis (Arabidopsis thaliana), allowing the timing of these processes to occur at the most appropriate time of the day in a 24-h period. The accuracy of timing relies on the synchrony of the clock and the environmental day/night cycle. Visible light is the most potent signal for such synchronization, but light-induced responses are also rhythmically attenuated (gated) by the clock. Here, we report a similar mutual interaction of the circadian clock and non-damaging photomorphogenic UV-B light. We show that low-intensity UV-B radiation acts as entraining signal for the clock. UV RESISTANCE LOCUS 8 (UVR8) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are required, but ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) are dispensable for this process. UV-B responsiveness of clock gene expression suggests that photomorphogenic UV-B entrains the plant clock through transcriptional activation. We also demonstrate that UV-B induction of gene expression under these conditions is gated by the clock in a HY5/HYH-independent manner. The arrhythmic early flowering 3-4 mutant showed non-gated, high-level gene induction by UV-B, yet displayed no increased tolerance to UV-B stress. Thus, the temporal restriction of UV-B responsiveness by the circadian clock can be considered as saving resources during acclimation without losing fitness.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Relojes Circadianos/fisiología , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas Portadoras/fisiología , Proteínas Cromosómicas no Histona/genética , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutación , Proteínas Nucleares/fisiología , Fotoperiodo , Estrés Fisiológico , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina-Proteína Ligasas , Rayos Ultravioleta
9.
Methods Mol Biol ; 2398: 99-106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34674171

RESUMEN

Circadian clocks allow organisms to synchronize growth to occur at the most optimal time of the day. In plants, the circadian clock controls the timing of hypocotyl (seedling stem) elongation. The activity of the circadian clock subsequently results in hypocotyl elongation being restricted to a small window around dawn and the early morning. Measuring hypocotyl elongation has provided circadian biologists a quick and non-intensive experimental tool to understand the effect of a circadian mutation on plant growth. Furthermore, hypocotyl elongation is also independently regulated by light, temperature, and hormone signaling pathways. Thus, hypocotyl assays can be expanded to investigate the crosstalk between the circadian clock and other extrinsic and intrinsic signaling pathways in controlling plant development. In this chapter we describe the resources and methods required to set up and analyze hypocotyl elongation in Arabidopsis.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Mutación , Fotoperiodo
10.
Trends Plant Sci ; 26(12): 1248-1257, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34404586

RESUMEN

Plants coordinate their growth and developmental programs with changes in temperature. This process is termed thermomorphogenesis. The underlying molecular mechanisms have begun to emerge in these nonstressful responses to adjustments in prevailing temperature. The circadian clock is an internal timekeeper that ensures growth, development, and fitness across a wide range of environmental conditions and it responds to thermal changes. Here, we highlight how the circadian clock gates thermoresponsive hypocotyl growth in plants, with an emphasis on different action mode of evening complex (EC) in thermomorphogenesis. We also discuss the biochemical and molecular mechanisms of EC in transducing temperature signals to the key integrator PIF4. This provides future perspectives on unanswered questions on EC-associated thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Temperatura
11.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962946

RESUMEN

Elevated ambient temperature has wide effects on plant growth and development. ELF3, a proposed thermosensor, negatively regulates protein activity of the growth-promoting factor PIF4, and such an inhibitory effect is subjected to attenuation at warm temperature. However, how ELF3 stability is regulated at warm temperature remains enigmatic. Here, we report the identification of XBAT31 as the E3 ligase that mediates ELF3 degradation in response to warm temperature in Arabidopsis XBAT31 interacts with ELF3, ubiquitinates ELF3, and promotes ELF3 degradation via the 26S proteasome. Mutation of XBAT31 results in enhanced accumulation of ELF3 and reduced hypocotyl elongation at warm temperature. In contrast, overexpression of XBAT31 accelerates ELF3 degradation and promotes hypocotyl growth. Furthermore, XBAT31 interacts with the B-box protein BBX18, and the XBAT31-mediated ELF3 degradation is dependent on BBX18 Thus, our findings reveal that XBAT31-mediated destruction of ELF3 represents an additional regulatory layer of complexity in temperature signaling during plant thermomorphogenesis.

13.
Elife ; 32014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24867215

RESUMEN

Natural selection of variants within the Arabidopsis thaliana circadian clock can be attributed to adaptation to varying environments. To define a basis for such variation, we examined clock speed in a reporter-modified Bay-0 x Shakdara recombinant inbred line and localized heritable variation. Extensive variation led us to identify EARLY FLOWERING3 (ELF3) as a major quantitative trait locus (QTL). The causal nucleotide polymorphism caused a short-period phenotype under light and severely dampened rhythm generation in darkness, and entrainment alterations resulted. We found that ELF3-Sha protein failed to properly localize to the nucleus, and its ability to accumulate in darkness was compromised. Evidence was provided that the ELF3-Sha allele originated in Central Asia. Collectively, we showed that ELF3 protein plays a vital role in defining its light-repressor action in the circadian clock and that its functional abilities are largely dependent on its cellular localization.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Relojes Circadianos , Factores de Transcripción/genética , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Mapeo Cromosómico , Flores , Geografía , Luz , Microscopía Confocal , Mutación , Fenotipo , Filogenia , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Factores de Transcripción/metabolismo , Transgenes
14.
Cell Rep ; 9(6): 1983-9, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533339

RESUMEN

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the de-etiolated 1 (DET1)-constitutive photomorphogenic 1 (COP1)-elongated hypocotyl 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Etiolado , Proteínas Nucleares/metabolismo , Organogénesis de las Plantas , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA