Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Nanobiotechnology ; 21(1): 235, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481565

RESUMEN

Systemic administration of platinum-based drugs has obvious limitations in the treatment of advanced bladder cancer (BC) owing to lower tumor accumulation and uncontrolled release of chemotherapeutics. There is an urgent need for advanced strategies to overcome the current limitations of platinum-based chemotherapy, to achieve maximal therapeutic outcomes with reduced side effects. In this study, self-polymerized platinum (II)-polydopamine nanocomplexes (PtPDs) were tailored for efficient chemo-photoimmunotherapy of BC. PtPDs with high Pt loading content (11.3%) were degradable under the combination of a reductive tumor microenvironment and near-infrared (NIR) light irradiation, thus controlling the release of Pt ions to achieve efficient chemotherapy. In addition, polydopamine promoted stronger photothermal effects to supplement platinum-based chemotherapy. Consequently, PtPDs provided effective chemo-photothermal therapy of MB49 BC in vitro and in vivo, strengthening the immunogenic cell death (ICD) effect and robust anti-tumoral immunity response. When combined with a PD-1 checkpoint blockade, PtPD-based photochemotherapy evoked systemic immune responses that completely suppressed primary and distant tumor growth without inducing systemic toxicities. Our work provides a highly versatile approach through metal-dopamine self-polymerization for the precise delivery of metal-based chemotherapeutic drugs, and may serve as a promising nanomedicine for efficient and safe platinum-based chemotherapy for BC.


Asunto(s)
Nanomedicina , Neoplasias de la Vejiga Urinaria , Humanos , Polimerizacion , Indoles , Microambiente Tumoral
2.
ACS Nano ; 18(1): 470-482, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38146673

RESUMEN

Targeted delivery of vaccines to the spleen remains a challenge. Inspired by the erythrophagocytotic process in the spleen, we herein report that intravenous administration of senescent erythrocyte-based vaccines profoundly alters their tropism toward splenic antigen-presenting cells (APCs) for imprinting adaptive immune responses. Compared with subcutaneous inoculation, intravenous vaccination significantly upregulated splenic complement expression in vivo and demonstrated synergistic antibody killing in vitro. Consequently, intravenous senescent erythrocyte vaccination produces potent SARS-CoV-2 antibody-neutralizing effects, with potential protective immune responses. Moreover, the proposed senescent erythrocyte can deliver antigens from resected tumors and adjuvants to splenic APCs, thereby inducing a personalized immune reaction against tumor recurrence after surgery. Hence, our findings suggest that senescent erythrocyte-based vaccines can specifically target splenic APCs and evoke adaptive immunity and complement production, broadening the tools for modulating immunity, helping to understand adaptive response mechanisms to senescent erythrocytes better, and developing improved vaccines against cancer and infectious diseases.


Asunto(s)
Bazo , Vacunas , Vacunación , Inmunidad Adaptativa , Administración Intravenosa , Eritrocitos
3.
Sci Adv ; 8(4): eabj2372, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089791

RESUMEN

A therapeutic strategy that targets multiple proinflammatory factors in inflammatory bowel disease (IBD) with minimal systemic side effects would be attractive. Here, we develop a drug-free, biodegradable nanomedicine that acts against IBD by scavenging proinflammatory cell-free DNA (cfDNA) and reactive oxygen species (ROS). Polyethylenimine (PEI) was conjugated to antioxidative diselenide-bridged mesoporous organosilica nanoparticles (MONs) to formulate nanoparticles (MON-PEI) that exhibited high cfDNA binding affinity and ROS-responsive degradation. In ulcerative colitis and Crohn's disease mouse colitis models, orally administered MON-PEI accumulated preferentially in the inflamed colon and attenuated colonic and peritoneal inflammation by alleviating cfDNA- and ROS-mediated inflammatory responses, allowing a reduced dose frequency and ameliorating colitis even after delayed treatment. This work suggests a new nanomedicine strategy for IBD treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones , Polietileneimina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
4.
Adv Sci (Weinh) ; 8(15): 2002020, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34386315

RESUMEN

Biomimetic strategies are useful for designing potent vaccines. Decorating a nanoparticulate adjuvant with cell membrane fragments as the antigen-presenting source exemplifies, such as a promising strategy. For translation, a standardizable, consistent, and scalable approach for coating nanoadjuvant with the cell membrane is important. Here a turbulent mixing and self-assembly method called flash nanocomplexation (FNC) for producing cell membrane-coated nanovaccines in a scalable manner is demonstrated. The broad applicability of this FNC technique compared with bulk-sonication by using ten different core materials and multiple cell membrane types is shown. FNC-produced biomimetic nanoparticles have promising colloidal stability and narrow particle polydispersity, indicating an equal or more homogeneous coating compared to the bulk-sonication method. The potency of a nanovaccine comprised of B16-F10 cancer cell membrane decorating mesoporous silica nanoparticles loaded with the adjuvant CpG is then demonstrated. The FNC-fabricated nanovaccines when combined with anti-CTLA-4 show potency in lymph node targeting, DC antigen presentation, and T cell immune activation, leading to prophylactic and therapeutic efficacy in a melanoma mouse model. This study advances the design of a biomimetic nanovaccine enabled by a robust and versatile nanomanufacturing technique.


Asunto(s)
Antígeno CTLA-4/inmunología , Vacunas contra el Cáncer/uso terapéutico , Melanoma Experimental/prevención & control , Nanopartículas/uso terapéutico , Adyuvantes Inmunológicos/uso terapéutico , Animales , Presentación de Antígeno/efectos de los fármacos , Biomimética , Antígeno CTLA-4/antagonistas & inhibidores , Vacunas contra el Cáncer/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Humanos , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Melanoma Experimental/inmunología , Ratones , Linfocitos T/inmunología
5.
Biomaterials ; 271: 120716, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621894

RESUMEN

Chemotherapy is a major approach for treating breast cancer patients. Paradoxically, it can also induce cancer progression. Understanding post-chemotherapy metastasis mechanism will help the development of new therapeutic strategies to ameliorate chemotherapy-induced cancer progression. In this study, we deciphered the role of HMGB1 in the regulation of TLR4-mediated epithelial to mesenchymal transitions (EMT) process on doxorubicin (Dox)-treated 4T1 breast cancer cells. Berberine (Ber), a clinically approved alkaloid has been demonstrated as an HMGB1-TLR4 axis regulator to Dox-exacerbated breast cancer metastasis in vitro and in vivo. Hypothesizing that combination of Dox and Ber would be beneficial for breast cancer chemotherapy, we engineered self-assembled nanodrug (DBNP) consisting of Dox and Ber without the aid of additional carriers. After cloaking with 4T1 cell membranes, DBNP@CM exhibited higher accumulation at tumor sites and prolonged blood circulation time in 4T1 orthotopic tumor-bearing mice than DBNP. Importantly, DBNP@CM not only effectively inhibited tumor growth with fewer side effects, but also remarkably suppressed pulmonary metastasis via blocking HMGB1-TLR4 axis. Together, our results have provided a promising combination strategy to dampen chemotherapy-exacerbated breast cancer metastasis and shed light on the development of biomimetic nanodrug for efficient and safe breast cancer chemotherapy.


Asunto(s)
Berberina , Neoplasias de la Mama , Neoplasias Pulmonares , Nanopartículas , Animales , Biomimética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina , Humanos , Ratones , Ratones Endogámicos BALB C
6.
Sci Adv ; 6(22): eaay7148, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32523983

RESUMEN

Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.


Asunto(s)
Ácidos Nucleicos Libres de Células , Nanopartículas , Sepsis , ADN/uso terapéutico , Humanos , Polietileneimina/uso terapéutico , Sepsis/etiología , Sepsis/genética
7.
Acta Biomater ; 100: 352-364, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31563690

RESUMEN

Despite the rapid progress which has been made in hepatocellular carcinoma (HCC) chemotherapeutics, recurrence of liver cancer still remains a barrier to achieve satisfying prognosis. Herein, we aimed to decipher the role of berberine (BER) in chemotherapy-exacerbated HCC repopulation via developing a nanocarrier co-deliveries doxorubicin (DOX) and BER to achieve a synergic effect in HCC treatment. The underlying fact of chemotherapy that promotes HCC repopulation was firstly examined and corroborated by clinical samples and murine repopulation model. Then, hyaluronic acid (HA)-conjugated Janus nanocarrier (HA-MSN@DB) was developed to load DOX and BER simultaneously. The HCC targeting efficiency, pH-controlled drug-release and anti-cancer property of HA-MSN@DB were assessed in CD44-overexpressed HCCs and normal liver cells. Magnet resonance imaging, bio-distribution, biocompatibility, tumor and recurrence inhibition studies were performed in H22 tumor-bearing mice. BER significantly reduced doxorubicin (DOX)-triggered HCC repopulation in vitro and in vivo through inhibiting Caspase-3-iPLA2-COX-2 pathway. The delivery of HA-MSN@DB into HCCs through CD44 receptor-mediated targeting effect was demonstrated. The controlled release of DOX and BER in response to acidic tumor microenvironment was validated. Importantly, HA-MSN@DB drastically enhanced the antitumor activity of DOX and suppressed DOX-exacerbated HCC repopulation in vitro and in vivo. Furthermore, HA-MSN@DB exhibited enhanced tumor accumulation and biocompatibility. Our findings revealed the pivotal role of BER in overcoming chemotherapy-exacerbated HCC repopulation through Caspase-3-iPLA2-COX-2 pathway, thereby providing a promising and stable nanocarrier integrating DOX and BER for effective HCC chemotherapy without repopulation. STATEMENT OF SIGNIFICANCE: In this work, we have first demonstrated the fact that berberine (Ber) reduces chemotherapy-exacerbated HCC recurrence and studied its mechanism by the aid of a doxorubicin-induced mice HCC relapse model. We then developed a promising strategy that simultaneously inhibits HCC and its recurrence with an HCC-targeted co-delivery nanocarrier HA-MSN@DB and revealed that such an inhibition was related with the suppression of Caspase-3-iPLA2-COX-2 pathway by berberine.


Asunto(s)
Berberina/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Recurrencia Local de Neoplasia/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Liberación de Fármacos , Células Hep G2 , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos ICR , Persona de Mediana Edad , Células 3T3 NIH , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Dióxido de Silicio/química , Distribución Tisular/efectos de los fármacos
8.
Biofactors ; 44(5): 496-502, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30365229

RESUMEN

Berberine, a widely used isoquinoline alkaloid in traditional Chinese medicine, has been proved to be a potential candidate in liver cancer therapy. However, the low therapeutic dose in the tumor target which is due to the poor solubility and oral bioavailability has limited its clinical application. In this study, fluorescent self-carried Berberine microrods (Ber-MRs) were prepared in gram-scale through a facile and cheap antisolvent precipitation method. Ber-MRs exhibited good optical properties, pH-responsive drug release behavior and selective and safe antitumor performance in vitro and in vivo without obvious toxicity. These findings have demonstrated that Ber-MRs are promising for efficient and safe liver cancer therapy. © 2018 BioFactors, 44(5):496-502, 2018.


Asunto(s)
Berberina/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Medicina Tradicional China , Administración Oral , Animales , Berberina/síntesis química , Berberina/química , Disponibilidad Biológica , Liberación de Fármacos , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/patología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Solubilidad/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Theranostics ; 8(14): 3808-3823, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083261

RESUMEN

Despite the vital role miRNA-27a plays in driving the development and progress of liver cancer, miRNA-based inhibition therapy is hampered due to its undesired degradation and off-target effects. Herein, a multifunctional nanoparticle for noninvasive tracking of targeted delivery of anti-miR-27a oligonucleotides against liver cancer was constructed. Methods: Dual-fluorescent conjugates (QD-HA-PEI) were first fabricated through crosslinking hyaluronic acid (HA), polyethyleneimine (PEI) and near-infrared (NIR) fluorescent quantum dots (QDs) via a facile one-pot approach. Antisense oligonucleotide was then encapsulated by QD-HA-PEI to form anti-miR-27a/QD-HA-PEI via electrostatic interactions. Targeting, biodistribution, bioimaging, in vitro cytotoxicity and in vivo anti-tumor effects were evaluated and the underlying mechanism was studied. Results: The NIR fluorescence of anti-miR-27a/QD-HA-PEI could be employed to monitor CD44 receptor-targeted cellular uptake and tumor accumulation. Importantly, the intrinsic fluorescence of anti-miR-27a/QD-HA-PEI remained in the "ON" state in extracellular or blood environment, but switched to the "OFF" state in the intracellular environment, indicating pH-responsive oligonucleotide release. Furthermore, anti-miR-27a/QD-HA-PEI exhibited effective and selective anti-cancer effects in vitro and in vivo with fewer side effects via the direct down-regulation of oncogenic transcription factors FOXO1 and PPAR-γ. Conclusion: Our findings validate the dual-fluorescent nanoparticles as delivery vectors of therapeutic miRNA, capable of simultaneous tumor imaging and tracking of miRNA-based modulation therapy, thereby providing an efficient and safe approach for liver cancer theranostics.


Asunto(s)
Antagomirs/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Nanopartículas/administración & dosificación , Nanomedicina Teranóstica/métodos , Animales , Antagomirs/análisis , Antagomirs/farmacocinética , Antineoplásicos/análisis , Antineoplásicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Hep G2 , Xenoinjertos , Humanos , Nanopartículas/análisis , Trasplante de Neoplasias , Imagen Óptica/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA